Kajian Potensi Teknologi Microbial Electrosynthesis Cell untuk Sintesis Senyawa Organik (C1 - C5) dari Gas Karbondioksida
DOI:
https://doi.org/10.21771/jrtppi.2015.v6.no2.p67-74Keywords:
Bioelektrokimia, karbondioksida, asetat, etanol, elektrosintesisAbstract
Karbon dioksida dapat direduksi menjadi etanol dan senyawa organik lainnya seperti asetat dengan cara mengaplikasikan energi listrik dan dengan bantuan bakteri elektroaktif sebagai katalis, suatu teknologi yang dinamakan sebagai Microbial Electrosynthesis Cell (MES). Teknologi ini menjadi sangat menarik untuk diteliti lebih lanjut karena merupakan upaya untuk menyimpan energi listrik dari sumber energi terbarukan seperti energi panas matahari dan angin, sebagai upaya untuk mereduksi gas CO2dan sebagai salah satu alternatif teknologi dalam produksi bahan bakar ramah lingkungan (biofuel). Walaupun demikian, teknologi ini masih tergolong baru,dan penelitian yang ada masih dalam skala laboratorium karena adanya hambatan-hambatan untuk aplikasi teknologi ini dalam skala pilot plant. Oleh karena itu, di dalam kajian iniakan menitik beratkan pada investigasi secara kuantitatif dengan cara mereview penelitian-penelitian yang sudah dilakukan selama kurun waktu 10 tahun ini, sehingga dapat dijadikan referensi dalam pengembangan teknologi ini untuk skala yang lebih besar nantinya.References
Cheng, S. dan Hamelers, H.V.M., 2008. Critical Review Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. , 42(23).
van Eerten-Jansen, M.C. a. a. et al., 2014. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. Journal of Chemical Technology dan Biotechnology, 31(April), p.n/a–n/a. Available at: http://doi.wiley.com/10.1002/jctb.4413.
Van Eerten-Jansen, M.C.A.A. et al., 2013. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustainable Chemistry and Engineering.
Harnisch, F. dan Schröder, U., 2009. Selectivity versus mobility: Separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem, 2, pp.921–926.
Jia, N. et al., 2005. Bioelectrochemistry and enzymatic activity of glucose oxidase immobilized onto the bamboo-shaped CNx nanotubes. Electrochimica Acta, 51(4), pp.611–618.
Jiang, Y. et al., 2013. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. International Journal of Hydrogen Energy.
Klasson, K.T. et al., 1992. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme and Microbial Technology, 14(8), pp.602–608.
Köpke, M. et al., 2011. 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Applied and environmental microbiology.
Kundiyana, D.K., Huhnke, R.L. dan Wilkins, M.R., 2010. Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations. Journal of Bioscience and Bioengineering.
Lee, P., 2010. Syngas fermentation to ethanol using innovative hollow fiber membrane.
Logan, B.E. dan Rabaey, K., 2012. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science (New York, N.Y.), 337(6095), pp.686–90. Available at : http://www.ncbi.nlm.nih.gov /pubmed/22879507 [Accessed July 9, 2014].
Lovley, D.R. dan Nevin, K.P., 2013. Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Current Opinion in Biotechnology.
Min, S., Jiang, Y. dan Li, D., 2013. Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture. Journal of Microbiology and Biotechnology.
Nevin, K.P. et al., 2010. Microbial Electrosynthesis : Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds. , 1(2), pp.1–4.
Nevin, K.P. et al., 2010. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio.
Sakai, S. et al., 2004. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnology Letters.
Schuchmann, K. dan Müller, V., 2014. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nature reviews. Microbiology, 12(12), pp.809–821. Available at: http://www.ncbi.nlm.nih.gov/ pubmed/25383604 [Accessed November 11, 2014].
Steinbusch, K.J.J. et al., 2010. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science and Technology.
Su, M., Jiang, Y. dan Li, D., 2013. Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture. Journal of Microbiology and Biotechnology, 23(8), pp.1140–1146.
Teske, S. et al., 2010. Energy [R]evolution 2010—a sustainable world energy outlook. Energy Efficiency, 4(3), pp.409–433. Available at: http://link.springer.com/ 10.1007/s12053-010-9098-y [Accessed January 6, 2015].
Wang, H. dan Ren, Z.J., 2013. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Rustiana Yuliasni
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.