Biogas Production from Sugarcane Vinasse: A Review
DOI:
https://doi.org/10.21771/jrtppi.2021.v12.no2.p34-44Keywords:
Agro-Industrial wastewater, biogas, methane, sugarcane vinasse, wastewater technologyAbstract
Biogas is a renewable energy sources that could replace the role of fossil fuel. Biogas could be produced from biomass or agro-industrial wastewater. Sugarcane vinasse has potential of biogas production due to its high BOD concentration (10–65 g BOD/l). However, the biogas production from sugarcane vinasse has several drawbacks that hinders the maximum biogas yield, such as: acidic pH (pH 3.5 – 5.0), high temperature (80–90°C) and high concentration of sulfuric acid (> 150 mg/L). Theoretically, the methane potential per gram COD is 0.35 L/gr COD, containing of 60% methane. However, up to date, the maximum biogas production from vinasse was less then its theoretical value. To get the full potential of biogas production from vinasse wastewater as well as to reduce the capital cost for full scale application, combination of suitable pre-treatment, selected microorganisms and bioreactor design-configuration are the most important parameters to be considered. This paper aims to explore the potential of sugarcane vinasse to produce biogas, by elaborating the aforementioned key parameters. In this review the basic characteristic and the potency of sugarcane vinasse wastewater will be elaborated. Furthermore, the effect of key parameters such as pH, temperature, and organic load to biogas production will also be discussed. The biogas technology will also be explored. Lastly, conclusion will be determinedReferences
Albuquerque, J. N., Ratusznei, S. M., & Rodrigues, J. A. D. (2019). Biomethane production by thermophilic co-digestion of sugarcane vinasse and whey in an AnSBBR : E ff ects of composition , organic load , feed strategy and temperature. Journal of Environmental Management, 251(September), 109606. https://doi.org/10.1016/j.jenvman.2019.109606
Barrera, E. L., Spanjers, H., Dewulf, J., Romero, O., & Rosa, E. (2013). The sulfur chain in biogas production from sulfate-rich liquid substrates : a review on dynamic modeling with vinasse as model substrate, (May), 1405–1420. https://doi.org/10.1002/jctb.4071
Bernal, A. P., Felipe, I., Paula, A., Silva, M., Barros, R. M., & Ribeiro, E. M. (2017). Vinasse biogas for energy generation in Brazil: An assessment of economic feasibility, energy potential and avoided CO2 emissions. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.03.064
Boncz, M. A., Formagini, E. L., Santos, L. S., Marques, R. D., & Paulo, P. L. (2012). Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse, (around 4), 2453–2460. https://doi.org/10.2166/wst.2012.476
Budiyono, & Sumardiyono, I. S. (2013). Biogas Production Kinetic from Vinasse Waste in Batch Mode Anaerobic Digestion. World Applied Scinces Journal, 26(11), 1464–1472. https://doi.org/10.5829/idosi.wasj.2013.26.11.1405
España-gamboa, E. I., Mijangos-cortés, J. O., Hernández-zárate, G., & Maldonado, J. A. D. (2012). Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor, 1–9.
Ferraz, N., Koyama, M. H., Araújo, M. M. De, & Zaiat, M. (2016). Thermophilic anaerobic digestion of raw sugarcane vinasse Ant o, 89. https://doi.org/10.1016/j.renene.2015.11.064
Fuess, L. T., de Araújo Júnior, M. M., Garcia, M. L., & Zaiat, M. (2017). Designing full-scale biodigestion plants for the treatment of vinasse in sugarcane biorefineries: How phase separation and alkalinization impact biogas and electricity production costs? Chemical Engineering Research and Design, 119, 209–220. https://doi.org/10.1016/j.cherd.2017.01.023
Gomes, V., Barros, D., Maria, R., Alves, R., & Oliveira, D. (2016). Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Brazilian Journal of Microbiology, 47(3), 628–639. https://doi.org/10.1016/j.bjm.2016.04.021
Guerreiro, L. F., Rodrigues, C. S. D., Duda, R. M., Oliveira, R. A. De, Boaventura, R. A. R., & Madeira, L. M. (2016). Treatment of sugarcane vinasse by combination of coagulation / fl occulation and Fenton ’ s oxidation, 181, 237–248. https://doi.org/10.1016/j.jenvman.2016.06.027
Harihastuti, N., & Marlena, B. (2018). Bioenergy Potential Based on Vinasse From Ethanol Industrial Waste to Green Energy Sustainability, 02015, 2017–2019.
Harihastuti, N., Yuliasni, R., Djayanti, S., H, N. I., Rame, R., & Prasetio, A. (2020). Hybrid Filter Integrated technology for generation from vinasse with shorter hydraulic retention time, 10008, 1–9.
Harihastuti, N., Yuliasni, R., Djayanti, S., Handayani, N. I., Rame, R., Prasetio, A., & Kadier, A. (2021). Full-Scale Application of Up-flow High Rate Anaerobic Reactor with Substrate Modification and Effluent Recirculation for Sugarcane Vinasse Degradation and Biogas Generation, 22(4), 314–324.
Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., & Nelles, M. (2016). Bioresource Technology Enhancing biogas production from vinasse in sugarcane biorefineries : Effects of urea and trace elements supplementation on process performance and stability. BIORESOURCE TECHNOLOGY, 1–11. https://doi.org/10.1016/j.biortech.2016.01.110
Janke, L., Leite, A., Nikolausz, M., Schmidt, T., & Liebetrau, J. (2015). Biogas Production from Sugarcane Waste : Assessment on Kinetic Challenges for Process Designing, 20685–20703. https://doi.org/10.3390/ijms160920685
Jesus, G. C. De, Bastos, R. G., & Altenhofen, M. (2019). Biocatalysis and Agricultural Biotechnology Production and characterization of alginate beads for growth of immobilized Desmodesmus subspicatus and its potential to remove potassium , carbon and nitrogen from sugarcane vinasse. Biocatalysis and Agricultural Biotechnology, 22(October), 101438. https://doi.org/10.1016/j.bcab.2019.101438
Kayhanian, M., & Rich, D. (1995). PILOT-SCALE HIGH SOLIDS THERMOPHILIC ANAEROBIC DIGESTION OF MUNICIPAL SOLID WASTE WITH AN EMPHASIS ON NUTRIENT REQUIREMENTS. Biomass and Bioenergy, 8(6).
Lebrero, R., & Zaiat, M. (2017). Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor. https://doi.org/10.1007/s12010-017-2488-2
Marafon, A. C., Salomon, K. R., Amorim, E. L. C., & Peiter, F. S. (2020). Use of sugarcane vinasse to biogas, bioenergy, and biofertilizer production. Sugarcane Biorefinery, Technology and Perspectives. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814236-3.00010-x
Marafon, A. C., Salomon, K. R., & Lucena, E. (2020). Use of sugarcane vinasse to biogas , bioenergy , and biofertilizer production. Sugarcane Biorefinery, Technology and Perspectives. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814236-3.00010-X
Meng, L., Jin, K., Yi, R., Chen, M., Peng, J., & Pan, Y. (2020). Bioresource Technology Enhancement of bioenergy recovery from agricultural wastes through recycling of cellulosic alcoholic fermentation vinasse for anaerobic co- digestion. Bioresource Technology, 311(May), 123511. https://doi.org/10.1016/j.biortech.2020.123511
Meyer, J. H., Rein, P., Turner, P., Administrative, K. M., & Mcgregor, M. C. (2011). MANAGEMENT MANAGEMENT MANUAL FOR THE CANE SUGAR MANUAL FOR THE ( FINAL ) CANE SUGAR ( DRAFT ).
Moraes, B. S., Triolo, J. M., Lecona, V. P., Zaiat, M., & Sommer, S. G. (2015). Biogas production within the bioethanol production chain: use of co-substrates for anaerobic digestion of sugar beet vinasse. https://doi.org/10.1016/j.biortech.2015.04.089
Naspolini, B. F., Carlos, A., Machado, D. O., Barreiro, W., Junior, C., Maria, D., … Cammarota, M. C. (2017). Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy. BioMed Research International, 2017, 11.
OECD/FAO. (2019). Chapter 9. Biofuels. In OECD-FAO AGRICULTURAL OUTLOOK 2019- 2028 (pp. 205–225). Retrieved from https://doi.org/10.1016/j.jclepro.2017.03.064
Oliveira, B. G., Mendes, L. W., Smyth, E. M., Tsai, S. M., Feigl, B. J., & Mackie, R. I. (2020). Assessment of microbial diversity associated with CH 4 emission from sugarcane vinasse storage and transportation systems. Journal of Environmental Management, 269(May), 110748. https://doi.org/10.1016/j.jenvman.2020.110748
Otieno, B., & Apollo, S. (2020). Journal of Water Process Engineering Energy recovery from biomethanation of vinasse and its potential application in ozonation post-treatment for removal of biorecalcitrant organic compounds. Journal of Water Process Engineering, (July), 101723. https://doi.org/10.1016/j.jwpe.2020.101723
Parsaee, M., Kiani Deh Kiani, M., & Karimi, K. (2019). A review of biogas production from sugarcane vinasse. Biomass and Bioenergy, 122(January), 117–125. https://doi.org/10.1016/j.biombioe.2019.01.034
Parsaee, M., Kiani, M., Kiani, D., & Karimi, K. (2019). Biomass and Bioenergy A review of biogas production from sugarcane vinasse. Biomass and Bioenergy, 122(December 2018), 117–125. https://doi.org/10.1016/j.biombioe.2019.01.034
Pazuch, F. A., Eduardo, C., Nogueira, C., Nelson, S., Souza, M., Micuanski, V. C., … Lenz, A. M. (2017a). Economic evaluation of the replacement of sugar cane bagasse by vinasse , as a source of energy in a power plant in the state of Paraná , Brazil. Renewable and Sustainable Energy Reviews, 76(March), 34–42. https://doi.org/10.1016/j.rser.2017.03.047
Pazuch, F. A., Eduardo, C., Nogueira, C., Nelson, S., Souza, M., Micuanski, V. C., … Lenz, A. M. (2017b). Economic evaluation of the replacement of sugar cane bagasse by vinasse , as a source of energy in a power plant in the state of Paraná , Brazil. Renewable and Sustainable Energy Reviews, 76(December 2015), 34–42. https://doi.org/10.1016/j.rser.2017.03.047
Reis, Cristiano E R, Bento, H. B. S., Alves, T. M., Carvalho, A. K. F., & Castro, H. F. De. (2019). Vinasse Treatment within the Sugarcane-Ethanol Industry Using Ozone Combined with Anaerobic and Aerobic Microbial Processes. https://doi.org/10.3390/environments6010005
Reis, Cristiano E Rodrigues, Hu, B., & Hu, B. (2017). Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization. Frontiers in Energy Research, 5(April), 1–7. https://doi.org/10.3389/fenrg.2017.00007
Santos, F. S., Ricci, B. C., Neta, L. S. F., & Amaral, M. C. S. (2017). Sugarcane Vinasse Treatment by Two-stage Anaerobic Membrane Bioreactor : Department of Sanitary and Environmental Engineering , Universidade Federal de Department of Chemistry , Centro Federal de Educação Tecnológica de Minas Gerais ,. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.08.126
Soares, P., Zaiat, M., Augusto, C., & Tadeu, L. (2019). Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems ? A dual kinetic-energetic assessment. Journal of Cleaner Production, 240, 118005. https://doi.org/10.1016/j.jclepro.2019.118005
Syaichurrozi, I, & Sumardiono, S. (2014). Effect of Total Solid Content to Biogas Production Rate from Vinasse. International Journal of Engineering, 27(2), 177–184. https://doi.org/10.5829/idosi.ije.2014.27.02b.02
Syaichurrozi, Iqbal. (2016). Review – Biogas Technology to Treat Bioethanol Vinasse, 4(April), 16–23.
Tadeu, L., Loureiro, M., & Zaiat, M. (2018). Science of the Total Environment Seasonal characterization of sugarcane vinasse : Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Science of the Total Environment, 634, 29–40. https://doi.org/10.1016/j.scitotenv.2018.03.326
Tadeu, L., Messias, M., Júnior, D. A., Loureiro, M., & Zaiat, M. (2017). Chemical Engineering Research and Design Designing full-scale biodigestion plants for the treatment of vinasse in sugarcane biorefineries : How phase separation and alkalinization impact biogas and electricity production costs ? Chemical Engineering Research and Design, 119, 209–220. https://doi.org/10.1016/j.cherd.2017.01.023
Taylor, P., Siqueira, L. M., Damiano, E. S. G., & Silva, E. L. (2013). Toxic / Hazardous Substances and Environmental Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor Influence of organic loading rate on the anaerobic treatment of suga. Journal of Environmental Science and Health, 48, 1707–1716. https://doi.org/10.1080/10934529.2013.815535
Tena, M., Perez, M., & Solera, R. (2021a). Benefits in the valorization of sewage sludge and wine vinasse via a two-stage acidogenic-thermophilic and methanogenic-mesophilic system based on the circular economy concept. Fuel, 296, 120654. https://doi.org/https://doi.org/10.1016/j.fuel.2021.120654
Tena, M., Perez, M., & Solera, R. (2021b). Effect of hydraulic retention time on the methanogenic step of a two-stage anaerobic digestion system from sewage sludge and wine vinasse: Microbial and kinetic evaluation. Fuel, 296, 120674. https://doi.org/https://doi.org/10.1016/j.fuel.2021.120674
Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks p, 19.
Zimmerman, W. B. (2016). Author ’ s Accepted Manuscript. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2016.09.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rustiana Yuliasni
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.