Low Energy Bacteria Preservation of Extremely Halophilic Archaea Haloferax Lucentense and Haloferax Chudinovii Immobilized using Natural Zeolite

Authors

  • Rizal Awaludin Malik Balai Besar Teknologi Pencegahan Pencemaran Industri http://orcid.org/0000-0002-4067-9922
  • Nilawati Nilawati Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Novarina Irnaning Handayani Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Rame Rame Balai Besar Teknologi Pencegahan Pencemaran Industri https://orcid.org/0000-0002-2574-3519
  • Silvy Djayanti Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Ningsih Ika Pratiwi Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Nanik Indah Setianingsih Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Nasuka Nasuka Balai Besar Teknologi Pencegahan Pencemaran Industri

DOI:

https://doi.org/10.21771/jrtppi.2019.v10.no2.p16-28

Keywords:

immobilization, zeolite, Halophilic archaea, low cost, preservation

Abstract

The methods of microbial cells preservation were already known by liquid drying, freeze-drying, and freezing. Those methods could preserve bacteria cells in a long period of time but its survivability was relatively low and used relatively high energy during preservation. Immobilization was known as entrapping, attaching or encapsulating bacterial cells in a suitable matrix. This research was conducted to know the suitability of zeolite as immobilization carrier and also as preservation matrix of two halophilic archaea Haloferax chudinovii and Haloferax lucentense. Variable of this research was the type of the carrier which was raw zeolite, 110oC and 300oC heat-activated zeolite carrier, parameters measured in this study was physical and chemical of zeolite such as chemical content, Si/Al ratio, surface area and pore volume, and biochemical assay, bacterial cells numbers after immobilization and bacterial cells after preservation as bacterial response to the immobilization and preservation. Heat activation was significantly affecting the chemical composition, carrier surface area, and pore volume. Highest surface area, pore volume, and Si/Al ratio were obtained in 110oC pretreated zeolite followed by 300oC pretreated zeolite. The bacterial cells obtained after immobilization process was 1,8x107 cfu/g, 3,0 x 107 cfu/g, and 2,1x107 for raw zeolite, 110oC pretreated zeolite and 300oC zeolite respectively. After 4 months preservation, the slight reduction of the bacterial cells was observed. Immobilization halophilic archaeae using zeolite as carrier was proven as low cost and effective preservation method due to relatively simple process and unspecific preservation temperature requirements.

References

Abdelmajeed, N. A., Khelil, O. A., and Danial, E. N. 2012. Immobilization technology for enhancing bio-products industry. African J. Biotechnol., 11(71), 13528–13539. https://doi.org/10.5897/AJB12.547

Alfani, F., Cantarella, M., Cantarella, F., Gallifuoco, A., and Colella, C. 1994. Synthetic zeolites as carrier for enzyme immobilization in laboratory-scale fixed- bed columns’. Stud. Surf. Sci. Catal., 84, 1115–1122.

Castanier, S., Perthuisot, J. P., Rouchy, J. M., Maurin, A., and Guelorget, O. 1992. Halite ooids in Lake Asal, Djibouti: Biocrystalline build-UPS. Geobios, 25(6), 811–821. https://doi.org/10.1016/S0016-6995(92)80063-J

Chauhan, S., and Singh, S. 1999. Immobilization caused physiological and biochemical changes in NaCI-resistant ( NaCl ) mutant strain of diazotrophic cyanobacterium Anabaena variabilis. Indian J. Exp. Biol., 37, 696–700.

Das sarma, S. 2001. Halophiles. In Encyclopedia of Life Science (Vol. 1, pp. 1–9). Nature Publishing Group.

Dassarma, S., and Dassarma, P. 2016. Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol., 8847(25), 120–126. https://doi.org/10.1016/j.mib.2015.05.009.Halophiles

Djaeni, M., Kurniasari, L., Purbasari, A., and Sasongko, S. B. 2010. Activation of Natural Zeolite as Water Adsorbent for Mixed-Adsorption Drying. Int. Conf. Mater. Eng., (November), 25–28.

Empadinhas, N., and Costa, M. S. 2008. Osmoadaptation mechanisms in prokaryotes : distribution of compatible solutes. Int. Microbiol., 11, 151–161. https://doi.org/10.2436/20.1501.01.55

Fendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F., and Stan-lotter, H. 2011. Europe PMC Funders Group

Extremely halophilic archaea and the issue of long-term microbial survival. Eur. PMC Funders Gr., 5, 203–218. https://doi.org/10.1007/s11157-006-0007-y.Extremely

Fuoco, D. 2012. A New Method for Characterization of Natural Zeolites and Organic Nanostructure Using Atomic Force Microscopy, 79–91. https://doi.org/10.3390/nano2010079

Heckly, R. J. 1961. Preservation of Bacteria by Lyophilization, (1935), 1–76.

Hrenovic, J., Ivankovic, T., Tibljaš, D., and Roži, M. 2011. Zeolitized tuff as a carrier of bacteria. In Proceedings of the 4th slovenian-croatian symposium on zeolites (pp. 20–23).

Jack, T. R., and Zajic, J. E. 1977. The immobilization of whole cells. Adv. Biochem. Eng. Vol. 5, 125–145. https://doi.org/10.1007/bfb0008744

Jha, B; Singh, D. . 2016. Basics of Zeolites. In Fly Ash Zeolites (pp. 5–31). Springer International Publishing. https://doi.org/10.1007/978-981-10-1404-8

Klein, J., and Ziehr, H. 1990. Immobilization of microbial cells by adsorption. J. Biotechnol., 16, 1–16.

Kubota, M., Nakabayashi, T., Matsumoto, Y., Shiomi, T., Yamada, Y., Ino, K., … Sakaguchi, K. 2008. Selective adsorption of bacterial cells onto zeolites. Colloids Surfaces B Biointerfaces, 64(1), 88–97. https://doi.org/10.1016/j.colsurfb.2008.01.012

Kunte, H. J. 2009. Osmoregulation in Halophilic Bacteria. In Extremophiles (Vol. II).

Kupletskaya, M. B., and Netrusov, A. I. 2011. Viability of lyophilized microorganisms after 50-year storage. Microbiology, 80(6), 850–853. https://doi.org/10.1134/S0026261711060129

Lowenstein, T. K., Schubert, B. A., and Michael, N. 2011. Microbial communities in fluid inclusions and long-term survival in halite. GSA Today, 21(1), 1–9. https://doi.org/10.1130/GSATG81A.1

Malik, R. A., Handayani, N. I., Nilawati, Rame, Djayanti, S., Pratiwi, N. I., and Setyaningsih, N. I. 2019. Aplikasi Bakteri Halofilik Berwarna Merah Terimmobilisasi Dalam Meningkatkan Kualitas Garam Dalam Proses Produksi Garam Berbasis Air Laut (pp. 224–231). Surakarta.

Mery, C., Guerrero, L., and Alonso-gutierrez, J. 2012. Evaluation of natural zeolite as microorganism support medium in nitrifying batch reactors : Influence of zeolite particle size Journal of Environmental Science and Health , Part A : Toxic / Hazardous Substances and Environmental Engineering Evaluation of. J. Environ. Sci. Heal., 47, 420–427. https://doi.org/10.1080/10934529.2012.646129

Mustain, A., Wibawa, G., Nais, M. F., and Falah, M. 2014. Synthesis of zeolite NaA from low grade (high impurities) Indonesian natural zeolite. Indones. J. Chem., 14(2), 138–142. https://doi.org/10.22146/ijc.21250

Nilawati, Marihati, and Malik, R. A. 2017. Kemampuan isolat bakteri haloferax spp dalam meningkatkan kemurnian garam NaCl pada proses kristalisasi.pdf. J. Ris. Teknol. Pencegah. Pencemaran Ind., 8(2), 92–103. https://doi.org/https://doi.org/10.21771/jrtppi.2017.v8.no2

Norton, F., Mcgenity, J., and Grant, D. 1993. Archaeal halophiles ( halobacteria ) from two British salt mines. J. Gen. Microbiol., (139), 1077–1081.

Omarova, E. O., Lobakova, E. S., Dolnikova, G. A., Nekrasova, V. V., Idiatulov, R. K., Kashcheeva, P. B., … Dedov, A. G. 2012. Immobilization of bacteria on polymer matrices for degradation of crude oil and oil products. Moscow Univ. Biol. Sci. Bull., 67(1), 24–30. https://doi.org/10.3103/s0096392512010063

Oren, A. 2010. THOUGHTS ON THE “ MISSING LINK ” BETWEEN SALTWORKS BIOLOGY AND SOLAR SALT QUALITY. Glob. Nest J., 12(4), 417–425.

Oren, Aharon. 1994. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev., 13, 415–439. https://doi.org/10.1016/0168-6445(94)90063-9

Payra, P., and Dutta, P. K. 2003. Zeolites: A Primer. In Zeolites (pp. 1–19).

Sakane, T., Fukuda, I., Itoh, T., and Yokota, A. 1992. Long-term preservation of halophilic archaebacteria and thermoacidophilic archaebacteria by liquid drying. J. Microbiol. Methods, 16(4), 281–287. https://doi.org/10.1016/0167-7012(92)90080-N

Shindo, S., Takata, S., Taguchi, H., and Yoshimura, N. 2001. Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotechnol. Lett., 23, 2001–2004.

Suzana, C. udia S. M., Claudia, M., a, M., Larissa Guedes Fiuacute za, M. C. o, and ra, T. dde S. 2015. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African J. Biotechnol., 12(28), 4412–4418. https://doi.org/10.5897/ajb12.2677

Talebi, M., Vaezifar, S., Jafary, F., Fazilati, M., and Motamedi, S. 2016. Stability Improvement of Immobilized α -amylase using Nano Pore Zeolite, 14(1). https://doi.org/10.15171/ijb.1261

Tehei, M., Franzetti, B., Maurel, M. C., Vergne, J., Hountondji, C., and Zaccai, G. 2002. The search for traces of life: The protective effect of salt on biological macromolecules. Extremophiles, 6(5), 427–430. https://doi.org/10.1007/s00792-002-0275-6

Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., and Nomura, N. 2016. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem., 80(1), 7–12. https://doi.org/10.1080/09168451.2015.1058701

Vreeland, R. H. 2012. Advances in Understanding the Biology of Halophilic Microorganisms. https://doi.org/10.1007/978-94-007-5539-0

Weiß, S., Lebuhn, M., Andrade, D., and Zankel, A. 2013. Activated zeolite — suitable carriers for microorganisms in anaerobic digestion processes ? Appl Microbiol Biotechnol, 97, 3225–3238. https://doi.org/10.1007/s00253-013-4691-6

West, T. P., and Strohfus, B. 1997. Fungal cell immobilization on zeolite for pullulan production. Microbios, 91, 121–130.

Winters, Y. D., Lowenstein, T. K., and Timofeeff, M. N. 2015. Starvation-Survival in Haloarchaea. Life, 5, 1587–1609. https://doi.org/10.3390/life5041587

Woodward, J. 1988. Methods of immobilization of microbial cells. J. Microbiol. Methods, 8, 91–102.

Zerulla, K., Chimileski, S., Nather, D., Gophna, U., Papke, R. T., and

Soppa, J. 2014. DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One, 9(4). https://doi.org/10.1371/journal.pone.0094819

Zommere, Ž., and Nikolajeva, V. 2018. Immobilization of bacterial association in alginate beads for bioremediation of oil-contaminated lands. Environ. Exp. Biol., 105–111. https://doi.org/10.22364/eeb.15.09

Zur, J., Wojcieszyńska, D., and Guzik, U. 2016. Metabolic responses of bacterial cells to immobilization. Molecules, 21(7). https://doi.org/10.3390/molecules21070958

Downloads

Published

2019-12-16

How to Cite

Malik, R. A., Nilawati, N., Handayani, N. I., Rame, R., Djayanti, S., Pratiwi, N. I., Setianingsih, N. I., & Nasuka, N. (2019). Low Energy Bacteria Preservation of Extremely Halophilic Archaea Haloferax Lucentense and Haloferax Chudinovii Immobilized using Natural Zeolite. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 10(2), 16–28. https://doi.org/10.21771/jrtppi.2019.v10.no2.p16-28

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>