Integrasi Teknologi Koagulasi-Flokulasi dengan Filter Silika-Karbon Aktif Up Flow Sebagai Unit Pengolah Air Limbah Industri Karpet

Authors

  • Aris Mukimin Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Agus Purwanto Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Cholid Syahroni Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Misbachul Moenir Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Rame Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Agung Budiarto Balai Besar Teknologi Pencegahan Pencemaran Industri

DOI:

https://doi.org/10.21771/jrtppi.2017.v8.no1.p13-22

Keywords:

karpet, air limbah, lateks, koagulasi, karbon aktif

Abstract

Latek, kapur dan air merupakan bahan utama dalam proses produksi industri karpet. Komposisi dari ketiga bahan tersebut secara berurutan 30%, 50% dan 20% sehingga karakteristik air limbahnya dominan mengandung COD dan TDS. Integrasi koagulasi-flokuasi dengan filter silika-karbon aktif menjadi pilihan yang tepat sebagai unit pengolah polutan tersebut. Unit koagulasi dibuat dalam bentuk tabung silinder dengan kapasitas 2,5 m3, adapun filter silika-karbon aktif ditempatkan dalam dua tabung vertikal dengan kapasitas masing-masing 50 L . Proses koagulasi-fllokulasi dilakukan dengan sistem bacth menggunakan tawas dan anion yang dilanjutkan dengan sedimentasi dan aerasi. Filter vertikal silika-karbon aktif dioperasikan dengan sistem alir kontinyu secara up flow sebagai tahap akhir dari unit pengolahan. Reduksi COD dan DHL telah mampu mencapai 92% dan 74% dengan dosis tawas 1,96 Kg, kapur 0,857 Kg dan anion 1 g untuk volume limbah 2,45 m3 serta laju alir 6 L/menit di filter silika-karbon aktif.

References

Demmin TR., Uhrich KD., 1988, Improving carpet wastewater treatment, Andco Environmental Processes Inc, Amherst, New York

Dosta J., Rovira J., Gali A., Mace S., Mata-Alvarez J., 2008, Integration of a Coagulation/Flocculation step in a biological sequencing batch reactor for COD and nitrogen removal of supernatant of anaerobically digested piggery wastewater, Bioresource Technol 99: 5722-5730

Golob V., Vinder A., Simonic M., 2005, Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents, Dye and Pigments 67: 93-97

Ahmad AL., Ismail S., Bhatia S., 2005, Optimization of coagulation-floculation process for plan oil mill effluent using response surface methodology, Environ Sci Technol 39: 2828-2834

Amuda OS., Alade A., 2006, Coagulation/flocculation process in the treatment of abattoir wstewater, Desalination 196: 22-31

Chang Q., Fu JY., Li ZL., 1993, Principles of flocculation, Lanzhou University Press, Lanzhou, China

Desjardins C., Koudjonou B., Desjardins R., 2002, Laboratory study of ballasted flocculation, Water Res 36: 744-754

Elmaleh S., Yahi H., Coma J., 1996, Suspended solids abatement by pH increase-upgrading of an oxidation pond effluent, Water Res 30: 2357-2362

Ghaly A., Snow A., Faber B., 2006, Treatment of grease filter wastewater by chemical coagulation, Canadian Bio Eng 48: 12-22

Gurses A., Yalcin M., Dogar C., 2003, Removal of remazol red RB by using Al(III) as coagulant-flocculant: effect of some variables on settling velocity, Water Air Soil Poll 146: 297-318

Hameed BH., Din ATM., Ahmad AL., 2007, Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, J Hazard Mater 141: 819-825

Harihastuti N., Djayanti S., Rame, 2016, Pengaruh waktu kontak terhadap daya adsorpsi karbon aktif pada pengembangan teknologi proses purifikasi biogas, Jurnal Riset Teknologi Pencegahan Pencemaran Industri 7: 57-65

Howe KJ., Marwah A., Chiu KP., Adham SS., 2006, Effect of coagulation on the size of MF and UF membrane foulants. Environ Sci Technol 40: 7908-7913

Hu C., Liu H., Qu J., Wang D., Ru J., 2005, Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control, Environ Sci Technol 40: 325-331

MetCalf dan Eddy, 1991, Wastewater engineering treatment, disposal and reuse, McGrow-Hill, New York

Meric S., Selcuk H., Belgionrno V., 2005, Acute toxicity removal in textile finishing wastewater by fenton’s oxidation, ozone and coagulation-flocculation processes, Water Res 39: 1147-1153

Miller SM., Fugate EJ., Craver VO., Smith JA., Zimmerman JB, 2008, Toward understanding the efficacy and mechanism of opuntia spp as a natural coagulant for potential application in water treatment, Environ Sci Technol 42: 4274-4279

Morales-Florez V., Santos A., Romero-Hermida I., Esquivias L., 2015, Hydration and carbonation reactions of calcium oxide by weathering: kinetics and changes in the nanostructure, Cheml Eng J 265: 194-200

Mukimin A., Vistanty H., Crisnaningtyas F., 2015, Physico-chemical treatment to enhanching electroactivity properties of coconute shell-based carbon electrode, Int J Appl Chem 11: 553-565

Nandy T., Shastry S., Pathe PP., kaul SN., 2003, Pre-treatment of currency printing ink wastewater through coagulation-flocculation process, water Air Soil Poll 148: 15-30

Quaissa YA., Chabani M., Amrane A., Bensmaili A., 2012, Integration of electro coagulation and adsorption for the treatment of tannery wastewater-the case of an Algerian factory Rouiba, Procedia Engineering 33: 98-101

Spicer PT., Pratsinis SE., 1996, Shear-induced Flocculation: the evalution of floc structure and the shape of the size distribution at steady state, Water Res 30: 1049-1056

Syu M., Chen B., Chou S., 2003, A study on the sedimentation model and neutral network online adaptive control of a benzoic acid imitated wastewater oxidation process. Ind Eng Chem Res 42: 6862-6871

Vistanty H., Mukimin A., Handayani NI., 2015, Pengolahan air limbah industri karton box dengan metode integrasi UASB dan elektrokoagulasi0flotasi, Jurnal Riset Teknologi Pencegahan Pencemaran Industri 6: 1-8

Wang DS., Tang HX., Gregory J., 2002, relative importance of charge neutralization and precipitation on coagulation of kaolin with PACl: effect of sulfate ion, Environl Sci Techn 36: 1815-1820

Wang JP., Chen YZ., Ge XW., Yu HQ., 2007, Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using respons e surface methodology, Colloids Surfaces A 302: 204-210

Wang JP., Chen YZ., Yuan SJ., Sheng GP., Yu HQ., 2009, Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment, Water Rese 43: 5267-5275

Wang JP., Chen YZ., Wang Y., Yuan SJ., Yu HQ., 2011, Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology, Water Res 45: 5633-5640

Zhu K., El-Din MG., Moawad AK., Bromley D., 2004, Physical and chemical processes for removing suspended solids and phosphourus from liquid swine manure, Environ Technol 25: 1177-1187

Downloads

Published

2017-05-29

How to Cite

Mukimin, A., Purwanto, A., Syahroni, C., Moenir, M., Rame, & Budiarto, A. (2017). Integrasi Teknologi Koagulasi-Flokulasi dengan Filter Silika-Karbon Aktif Up Flow Sebagai Unit Pengolah Air Limbah Industri Karpet. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 8(1), 13–22. https://doi.org/10.21771/jrtppi.2017.v8.no1.p13-22

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2