Environmental Critical Aspects of The Conversion of Biomass to Biogas for Sustainable Energy in Indonesia


  • Rame Rame Center of Industrial Pollution Prevention Technology, Ministry of Industry
  • Purwanto Purwanto Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro
  • Sudarno Sudarno Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro




renewable energy, biomass, sustainable energy, biogas, environmental impact, conversion model


Renewable energy will become the foundation for meeting the world's energy needs in the future. However, Indonesia has not done much research on the development and application of technology for sustainable energy. Indonesia has potential energy sources. However, biomass conversion into other forms of energy, such as biogas, will hurt the environment. The development of biomass-based bioenergy is one of the best solution for meeting Indonesia's current and future energy needs. Biogas is biomass-based bioenergy, which is the potential for future energy sources. Minimizing the environment's degradation is a significant aspect of preparing the biomass to biogas conversion model. Furthermore, the production of biogas with automatic monitoring and control will minimize new waste formation. Indonesian government regulatory support and total community participation will increase converting biomass into biogas as renewable energy into electrical energy. The paper analyzes the environmental impact of biomass conversion into biogas and proposed an environmentally friendly conversion model.

Author Biographies

Purwanto Purwanto, Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro

Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang 50241, Indonesia
Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia

Sudarno Sudarno, Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro

Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang 50241, Indonesia
Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia


Adi, A. C., Lasnawatin, F., Prananto, A. B., Suzanti, V. M., Anutomo, I. G., Anggreani, D., … Yuanningrat, H. (2020). Handbook of Energy & Economic Statistics of Indonesia 2019.

Amirta, R., Herawati, E., Suwinarti, W., & Watanabe, T. (2016). Two-steps Utilization of Shorea Wood Waste Biomass for the Production of Oyster Mushroom and Biogas – A Zero Waste Approach. Agriculture and Agricultural Science Procedia, 9, 202–208. https://doi.org/10.1016/j.aaspro.2016.02.127

Azam, M., Khan, A. Q., Bakhtyar, B., & Emirullah, C. (2015). The causal relationship between energy consumption and economic growth in the ASEAN-5 countries. Renewable and Sustainable Energy Reviews, 47, 732–745. https://doi.org/10.1016/j.rser.2015.03.023

Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., & Kozik, V. (2017). Biological methods for odor treatment – A review. Journal of Cleaner Production, 152, 223–241. https://doi.org/10.1016/j.jclepro.2017.03.093

Bedi, A. S., Sparrow, R., & Tasciotti, L. (2017). The impact of a household biogas program on energy use and expenditure in East Java. Energy Economics, 68, 66–76. https://doi.org/10.1016/j.eneco.2017.09.006

Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Jayamuthunagai, J., & Praveenkumar, R. (2016). Biohydrogen and Biogas – An overview on feedstocks and enhancement process. Fuel, 185, 810–828. https://doi.org/10.1016/j.fuel.2016.08.030

Bilgili, F., Koçak, E., Bulut, Ü., & Kuloğlu, A. (2017). The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity. Energy, 133, 242–256. https://doi.org/10.1016/j.energy.2017.05.121

Chu, C. Y., Hastuti, Z. D., Dewi, E. L., Purwanto, W. W., & Priyanto, U. (2016). Enhancing strategy on renewable hydrogen production in a continuous bioreactor with packed biofilter from sugary wastewater. International Journal of Hydrogen Energy, 41(7), 4404–4412. https://doi.org/10.1016/j.ijhydene.2015.06.132

Direktur Jenderal EBTKE. (2015). Biogas: Turning Waste into Benefit.

Direktur Jenderal EBTKE. (2020). Update Kinerja Subsektor EBTKE.

Dyominov, I. G., & Zadorozhny, A. M. (2005). Greenhouse gases and recovery of the Earth's ozone layer. Advances in Space Research, 35(8 SPEC. ISS.), 1369–1374. https://doi.org/10.1016/j.asr.2005.04.090

Eker, S., & Erkul, B. (2018). Biohydrogen production by extracted fermentation from sugar beet. International Journal of Hydrogen Energy, 43(23), 10645–10654. https://doi.org/10.1016/j.ijhydene.2018.01.032

Erahman, Q. F., Purwanto, W. W., Sudibandriyo, M., & Hidayatno, A. (2016). An assessment of Indonesia's energy security index and comparison with seventy countries. Energy, 111, 364–376. https://doi.org/10.1016/j.energy.2016.05.100

Guebitz, G. M., Bauer, A., Bochmann, G., Gronauer, A., & Weiss, S. (2015). Biogas Science and Technology. Biogas Science and Technology. https://doi.org/10.1007/978-3-319-21993-6

Harihastuti, N., Yuliasni, R., Djayanti, S., Handayani, N., Rame, R., & Prasetio, A. (2021). Full-Scale Application of Up-flow High Rate Anaerobic Reactor with Substrate Modification and Effluent Recirculation for Sugarcane Vinasse Degradation and Biogas Generation. Journal of Ecological Engineering, 22(4), 314–324. https://doi.org/10.12911/22998993/134036

Hasan, M. H., Mahlia, T. M. I., & Nur, H. (2012). A review on energy scenario and sustainable energy in Indonesia. Renewable and Sustainable Energy Reviews, 16(4), 2316–2328. https://doi.org/10.1016/j.rser.2011.12.007

Hashemi, B., Sarker, S., Lamb, J. J., & Lien, K. M. (2021). Yield improvements in anaerobic digestion of lignocellulosic feedstocks. Journal of Cleaner Production, 288, 125447. https://doi.org/10.1016/j.jclepro.2020.125447

Hidayatno, A., Destyanto, A. R., & Hulu, C. A. (2019). Industry 4.0 technology implementation impact to industrial sustainable energy in Indonesia: A model conceptualization. Energy Procedia, 156, 227–233. https://doi.org/10.1016/j.egypro.2018.11.133

Huang, L., Xu, J., Sun, X., Li, C., Xu, R., Du, Y., … Zhang, J. (2018). Low-temperature photochemical activation of sol-gel titanium dioxide films for efficient planar heterojunction perovskite solar cells. Journal of Alloys and Compounds, 735, 224–233. https://doi.org/10.1016/j.jallcom.2017.11.027

Indrawan, N., Thapa, S., Wijaya, M. E., Ridwan, M., & Park, D. H. (2018). The biogas development in the Indonesian power generation sector. Environmental Development, 25(March 2017), 85–99. https://doi.org/10.1016/j.envdev.2017.10.003

Kumar, A., Kumar, A., Sharma, G., Al-Muhtaseb, A. H., Naushad, M., Ghfar, A. A., … Stadler, F. J. (2018). Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction, and CO2 conversion. Chemical Engineering Journal, 339(November 2017), 393–410. https://doi.org/10.1016/j.cej.2018.01.105

Kumar, S., Nehra, M., Deep, A., Kedia, D., Dilbaghi, N., & Kim, K. H. (2017). Quantum-sized nanomaterials for solar cell applications. Renewable and Sustainable Energy Reviews, 73(February), 821–839. https://doi.org/10.1016/j.rser.2017.01.172

Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(March), 877–891. https://doi.org/10.1016/j.rser.2018.03.111

Kurniawan, R., Sugiawan, Y., & Managi, S. (2018). Cleaner energy conversion and household emission decomposition analysis in Indonesia. Journal of Cleaner Production, 201, 334–342. https://doi.org/10.1016/j.jclepro.2018.08.051

Lee, D. H. (2017). Econometric assessment of bioenergy development. International Journal of Hydrogen Energy, 42(45), 27701–27717. https://doi.org/10.1016/j.ijhydene.2017.08.055

Liu, X., Zhang, S., & Bae, J. (2017). The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. Journal of Cleaner Production, 164, 1239–1247. https://doi.org/10.1016/j.jclepro.2017.07.086

Maaroff, R. M., Md Jahim, J., Azahar, A. M., Abdul, P. M., Masdar, M. S., Nordin, D., & Abd Nasir, M. A. (2019). Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. International Journal of Hydrogen Energy, 44(6), 3395–3406. https://doi.org/10.1016/j.ijhydene.2018.06.013

Mayer, F., Bhandari, R., & Gäth, S. (2019). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708–721. https://doi.org/10.1016/j.scitotenv.2019.03.449

Mirzoyan, S., Vassilian, A., Trchounian, A., & Trchounian, K. (2018). Prolongation of H2 production during mixed carbon sources fermentation in E. coli batch cultures: New findings and role of different hydrogenases. International Journal of Hydrogen Energy, 43(18), 8739–8746. https://doi.org/10.1016/j.ijhydene.2018.03.189

Mishra, S., Roy, M., & Mohanty, K. (2019). Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives. Bioresource Technology, 292(June), 122008. https://doi.org/10.1016/j.biortech.2019.122008

Monlau, F., Kaparaju, P., Trably, E., Steyer, J. P., & Carrere, H. (2015). Alkaline pretreatment to enhance one-stage CH4and two-stage H2/CH4production from sunflower stalks: Mass, energy and economical balances. Chemical Engineering Journal, 260, 377–385. https://doi.org/10.1016/j.cej.2014.08.108

Pambudi, N. A. (2018). Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable and Sustainable Energy Reviews, 81(March 2017), 2893–2901. https://doi.org/10.1016/j.rser.2017.06.096

Papilo, P., Marimin, Hambali, E., & Sitanggang, I. S. (2018). Sustainability index assessment of palm oil-based bioenergy in Indonesia. Journal of Cleaner Production, 196, 808–820. https://doi.org/10.1016/j.jclepro.2018.06.072

Prabakar, D., K, S. S., Manimudi, V. T., Mathimani, T., Kumar, G., Rene, E. R., & Pugazhendhi, A. (2018). Pretreatment technologies for industrial effluents : Critical review on bioenergy production and environmental concerns. Journal of Environmental Management, 218, 165–180. https://doi.org/10.1016/j.jenvman.2018.03.136

Preethi, Usman, T. M. M., Rajesh Banu, J., Gunasekaran, M., & Kumar, G. (2019). Biohydrogen production from industrial wastewater: An overview. Bioresource Technology Reports, 7(July), 100287. https://doi.org/10.1016/j.biteb.2019.100287

Purwanto, A., Sušnik, J., Suryadi, F. X., & de Fraiture, C. (2018). Determining strategies for water, energy, and food-related sectors in local economic development. Sustainable Production and Consumption, 16, 162–175. https://doi.org/10.1016/j.spc.2018.08.005

Rahayu, S. S., Budiyono, B., & Purwanto, P. (2018). Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor, 03010.

Rambabu, K., Show, P. L., Bharath, G., Banat, F., Naushad, M., & Chang, J. S. (2019). Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405. International Journal of Hydrogen Energy, (XXXX). https://doi.org/10.1016/j.ijhydene.2019.06.133

Rame. (2018). Oil Palm Empty Fruit Bunches (OPEFB): Existing Utilization and Current Trends Bio-Refinery in Indonesia. E3S Web of Conferences, 31, 1–5. https://doi.org/10.1051/e3sconf/20183103014

Ren, N. Q., Zhao, L., Chen, C., Guo, W. Q., & Cao, G. L. (2016). A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresource Technology, 215, 92–99. https://doi.org/10.1016/j.biortech.2016.03.124

Rogers, T., Ashtine, M., Koon Koon, R., & Atherley-Ikechi, M. (2019). Onshore wind energy potential for Small Island Developing States: Findings and recommendations from Barbados. Energy for Sustainable Development, 52, 116–127. https://doi.org/10.1016/j.esd.2019.08.002

Rosato, M. A. (2017). Managing Biogas Plants. Managing Biogas Plants. https://doi.org/10.1201/b22072

Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77(February), 59–69. https://doi.org/10.1016/j.rser.2017.03.136

Sainati, T., Locatelli, G., & Smith, N. (2019). Project financing in nuclear new build, why not? The legal and regulatory barriers. Energy Policy, 129(February), 111–119. https://doi.org/10.1016/j.enpol.2019.01.068

Sarkodie, S. A., & Strezov, V. (2019). Effect of foreign direct investments, economic development, and energy consumption on greenhouse gas emissions in developing countries. Science of the Total Environment, 646, 862–871. https://doi.org/10.1016/j.scitotenv.2018.07.365

Sarrica, M., Richter, M., Thomas, S., Graham, I., & Mazzara, B. M. (2018). Social approaches to energy transition cases in rural Italy, Indonesia and Australia: Iterative methodologies and participatory epistemologies. Energy Research and Social Science, 45(June), 287–296. https://doi.org/10.1016/j.erss.2018.07.001

Sgroi, F., Donia, E., & Alesi, D. R. (2018). Renewable energies, business models, and local growth. Land Use Policy, 72(September 2017), 110–115. https://doi.org/10.1016/j.landusepol.2017.12.028

Sharifzadeh, M., Hien, R. K. T., & Shah, N. (2019). China's roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage. Applied Energy, 235(October 2018), 31–42. https://doi.org/10.1016/j.apenergy.2018.10.087

Sikder, A., Inekwe, J., & Bhattacharya, M. (2019). Economic output in the era of changing energy-mix for G20 countries: New evidence with trade openness and research and development investment. Applied Energy, 235(June 2018), 930–938. https://doi.org/10.1016/j.apenergy.2018.10.092

Simangunsong, B. C. H., Sitanggang, V. J., Manurung, E. G. T., Rahmadi, A., Moore, G. A., Aye, L., & Tambunan, A. H. (2017). Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia. Forest Policy and Economics, 81(May 2016), 10–17. https://doi.org/10.1016/j.forpol.2017.03.022

Singh, H., Varanasi, J. L., Banerjee, S., & Das, D. (2019). Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy, 188, 116039. https://doi.org/10.1016/j.energy.2019.116039

Sinharoy, A., & Pakshirajan, K. (2020). A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renewable Energy, 147, 864–873. https://doi.org/10.1016/j.renene.2019.09.027

SIPSN. (2021). SIPSN - Sistem Informasi Pengelolaan Sampah Nasional. Retrieved May 18, 2021, from https://sipsn.menlhk.go.id/sipsn/ ?

Srivastava, N., Srivastava, M., Gupta, V. K., Ramteke, P. W., & Mishra, P. K. (2018). A novel strategy to enhance biohydrogen production using graphene oxide treated thermostable crude cellulase and sugarcane bagasse hydrolyzate under co-culture system. Bioresource Technology, 270(September), 337–345. https://doi.org/10.1016/j.biortech.2018.09.038

Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., … Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances, 37(6), 107384. https://doi.org/10.1016/j.biotechadv.2019.04.006

Steinhauser, A., & Deublein, D. (2011). Biogas from Waste and Renewables Energy: An Introduction. Industrial Biotechnology.

Suharyati, Pambudi, S. H., Wibowo, J. L., & Pratiwi, N. I. (2019). Indonesia Energy Outlook (IEO) 2019.

Suryaningsih, R., & Irhas. (2014). Bioenergy plants in Indonesia: Sorghum for producing bioethanol as an alternative energy substitute of fossil fuels. Energy Procedia, 47, 211–216. https://doi.org/10.1016/j.egypro.2014.01.216

Tang, S., Chen, J., Sun, P., Li, Y., Yu, P., & Chen, E. (2019). Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand, and Myanmar). Energy Policy, 129(September 2018), 239–249. https://doi.org/10.1016/j.enpol.2019.02.036

Tasri, A., & Susilawati, A. (2014). Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34–44. https://doi.org/10.1016/j.seta.2014.02.008

Thi, N. B. D., Lin, C. Y., & Kumar, G. (2016). Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. Journal of Cleaner Production, 122, 29–41. https://doi.org/10.1016/j.jclepro.2016.02.034

Vieira, A., Marques, R., Raposo, R., Martins, M., Craamer, P., Urchegui, G., … Oehmen, A. (2019). The impact of the art-ICA control technology on the performance, energy consumption, and greenhouse gas emissions of full-scale wastewater treatment plants, 213, 680–687. https://doi.org/10.1016/j.jclepro.2018.12.229

Winter, F., Agarwal, R. A., Hrdlicka, J., & Varjani, S. (2019). Introduction to CO2 Separation, Purification, and Conversion to Chemicals and Fuels. https://doi.org/10.1007/978-981-13-3296-8_1

Wu, X., Wu, K., Zhang, Y., Hong, Q., Zheng, C., Gao, X., & Cen, K. (2017). Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in China. Journal of Cleaner Production, 142, 3236–3242. https://doi.org/10.1016/j.jclepro.2016.10.146

Xiang, D., Yang, S., & Qian, Y. (2016). Techno-economic analysis and comparison of coal-based olefins processes. Energy Conversion and Management, 110, 33–41. https://doi.org/10.1016/j.enconman.2015.12.011

Yadav, P., Pandey, K., Bhatt, V., Kumar, M., & Kim, J. (2017). Critical aspects of impedance spectroscopy in silicon solar cell characterization: A review. Renewable and Sustainable Energy Reviews, 76(November 2015), 1562–1578. https://doi.org/10.1016/j.rser.2016.11.205

Zabaniotou, A. (2018). Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. Journal of Cleaner Production, 177, 197–206. https://doi.org/10.1016/j.jclepro.2017.12.172

Zabek, D., & Morini, F. (2019). Solid-state generators and energy harvesters for waste heat recovery and thermal energy harvesting. Thermal Science and Engineering Progress, 9(November 2018), 235–247. https://doi.org/10.1016/j.tsep.2018.11.011

Zhang, X., Bauer, C., Mutel, C. L., & Volkart, K. (2017). Life Cycle Assessment of Power-to-Gas: Approaches, system variations, and their environmental implications. Applied Energy, 190, 326–338. https://doi.org/10.1016/j.apenergy.2016.12.098

Zuli Pratiwi, W., Hadiyanto, H., Purwanto, P., & Nur Fadlilah, M. (2020). Bioelectricity production from tofu wastewater using microbial fuel cells with microalgae Spirulina sp as catholyte. E3S Web of Conferences, 202. https://doi.org/10.1051/e3sconf/202020208007



How to Cite

Rame, R., Purwanto, P., & Sudarno, S. (2021). Environmental Critical Aspects of The Conversion of Biomass to Biogas for Sustainable Energy in Indonesia. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 12(2), 1-14. https://doi.org/10.21771/jrtppi.2021.v12.no2.p1-14



Abstract viewed = 201 times

Most read articles by the same author(s)