Environmental Critical Aspects of The Conversion of Biomass to Biogas for Sustainable Energy in Indonesia
DOI:
https://doi.org/10.21771/jrtppi.2021.v12.no2.p1-14Keywords:
renewable energy, biomass, sustainable energy, biogas, environmental impact, conversion modelAbstract
Renewable energy will become the foundation for meeting the world's energy needs in the future. However, Indonesia has not done much research on the development and application of technology for sustainable energy. Indonesia has potential energy sources. However, biomass conversion into other forms of energy, such as biogas, will hurt the environment. The development of biomass-based bioenergy is one of the best solution for meeting Indonesia's current and future energy needs. Biogas is biomass-based bioenergy, which is the potential for future energy sources. Minimizing the environment's degradation is a significant aspect of preparing the biomass to biogas conversion model. Furthermore, the production of biogas with automatic monitoring and control will minimize new waste formation. Indonesian government regulatory support and total community participation will increase converting biomass into biogas as renewable energy into electrical energy. The paper analyzes the environmental impact of biomass conversion into biogas and proposed an environmentally friendly conversion model.References
Adi, A. C., Lasnawatin, F., Prananto, A. B., Suzanti, V. M., Anutomo, I. G., Anggreani, D., … Yuanningrat, H. (2020). Handbook of Energy & Economic Statistics of Indonesia 2019.
Amirta, R., Herawati, E., Suwinarti, W., & Watanabe, T. (2016). Two-steps Utilization of Shorea Wood Waste Biomass for the Production of Oyster Mushroom and Biogas – A Zero Waste Approach. Agriculture and Agricultural Science Procedia, 9, 202–208. https://doi.org/10.1016/j.aaspro.2016.02.127
Azam, M., Khan, A. Q., Bakhtyar, B., & Emirullah, C. (2015). The causal relationship between energy consumption and economic growth in the ASEAN-5 countries. Renewable and Sustainable Energy Reviews, 47, 732–745. https://doi.org/10.1016/j.rser.2015.03.023
Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., & Kozik, V. (2017). Biological methods for odor treatment – A review. Journal of Cleaner Production, 152, 223–241. https://doi.org/10.1016/j.jclepro.2017.03.093
Bedi, A. S., Sparrow, R., & Tasciotti, L. (2017). The impact of a household biogas program on energy use and expenditure in East Java. Energy Economics, 68, 66–76. https://doi.org/10.1016/j.eneco.2017.09.006
Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Jayamuthunagai, J., & Praveenkumar, R. (2016). Biohydrogen and Biogas – An overview on feedstocks and enhancement process. Fuel, 185, 810–828. https://doi.org/10.1016/j.fuel.2016.08.030
Bilgili, F., Koçak, E., Bulut, Ü., & Kuloğlu, A. (2017). The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity. Energy, 133, 242–256. https://doi.org/10.1016/j.energy.2017.05.121
Chu, C. Y., Hastuti, Z. D., Dewi, E. L., Purwanto, W. W., & Priyanto, U. (2016). Enhancing strategy on renewable hydrogen production in a continuous bioreactor with packed biofilter from sugary wastewater. International Journal of Hydrogen Energy, 41(7), 4404–4412. https://doi.org/10.1016/j.ijhydene.2015.06.132
Direktur Jenderal EBTKE. (2015). Biogas: Turning Waste into Benefit.
Direktur Jenderal EBTKE. (2020). Update Kinerja Subsektor EBTKE.
Dyominov, I. G., & Zadorozhny, A. M. (2005). Greenhouse gases and recovery of the Earth's ozone layer. Advances in Space Research, 35(8 SPEC. ISS.), 1369–1374. https://doi.org/10.1016/j.asr.2005.04.090
Eker, S., & Erkul, B. (2018). Biohydrogen production by extracted fermentation from sugar beet. International Journal of Hydrogen Energy, 43(23), 10645–10654. https://doi.org/10.1016/j.ijhydene.2018.01.032
Erahman, Q. F., Purwanto, W. W., Sudibandriyo, M., & Hidayatno, A. (2016). An assessment of Indonesia's energy security index and comparison with seventy countries. Energy, 111, 364–376. https://doi.org/10.1016/j.energy.2016.05.100
Guebitz, G. M., Bauer, A., Bochmann, G., Gronauer, A., & Weiss, S. (2015). Biogas Science and Technology. Biogas Science and Technology. https://doi.org/10.1007/978-3-319-21993-6
Harihastuti, N., Yuliasni, R., Djayanti, S., Handayani, N., Rame, R., & Prasetio, A. (2021). Full-Scale Application of Up-flow High Rate Anaerobic Reactor with Substrate Modification and Effluent Recirculation for Sugarcane Vinasse Degradation and Biogas Generation. Journal of Ecological Engineering, 22(4), 314–324. https://doi.org/10.12911/22998993/134036
Hasan, M. H., Mahlia, T. M. I., & Nur, H. (2012). A review on energy scenario and sustainable energy in Indonesia. Renewable and Sustainable Energy Reviews, 16(4), 2316–2328. https://doi.org/10.1016/j.rser.2011.12.007
Hashemi, B., Sarker, S., Lamb, J. J., & Lien, K. M. (2021). Yield improvements in anaerobic digestion of lignocellulosic feedstocks. Journal of Cleaner Production, 288, 125447. https://doi.org/10.1016/j.jclepro.2020.125447
Hidayatno, A., Destyanto, A. R., & Hulu, C. A. (2019). Industry 4.0 technology implementation impact to industrial sustainable energy in Indonesia: A model conceptualization. Energy Procedia, 156, 227–233. https://doi.org/10.1016/j.egypro.2018.11.133
Huang, L., Xu, J., Sun, X., Li, C., Xu, R., Du, Y., … Zhang, J. (2018). Low-temperature photochemical activation of sol-gel titanium dioxide films for efficient planar heterojunction perovskite solar cells. Journal of Alloys and Compounds, 735, 224–233. https://doi.org/10.1016/j.jallcom.2017.11.027
Indrawan, N., Thapa, S., Wijaya, M. E., Ridwan, M., & Park, D. H. (2018). The biogas development in the Indonesian power generation sector. Environmental Development, 25(March 2017), 85–99. https://doi.org/10.1016/j.envdev.2017.10.003
Kumar, A., Kumar, A., Sharma, G., Al-Muhtaseb, A. H., Naushad, M., Ghfar, A. A., … Stadler, F. J. (2018). Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction, and CO2 conversion. Chemical Engineering Journal, 339(November 2017), 393–410. https://doi.org/10.1016/j.cej.2018.01.105
Kumar, S., Nehra, M., Deep, A., Kedia, D., Dilbaghi, N., & Kim, K. H. (2017). Quantum-sized nanomaterials for solar cell applications. Renewable and Sustainable Energy Reviews, 73(February), 821–839. https://doi.org/10.1016/j.rser.2017.01.172
Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(March), 877–891. https://doi.org/10.1016/j.rser.2018.03.111
Kurniawan, R., Sugiawan, Y., & Managi, S. (2018). Cleaner energy conversion and household emission decomposition analysis in Indonesia. Journal of Cleaner Production, 201, 334–342. https://doi.org/10.1016/j.jclepro.2018.08.051
Lee, D. H. (2017). Econometric assessment of bioenergy development. International Journal of Hydrogen Energy, 42(45), 27701–27717. https://doi.org/10.1016/j.ijhydene.2017.08.055
Liu, X., Zhang, S., & Bae, J. (2017). The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. Journal of Cleaner Production, 164, 1239–1247. https://doi.org/10.1016/j.jclepro.2017.07.086
Maaroff, R. M., Md Jahim, J., Azahar, A. M., Abdul, P. M., Masdar, M. S., Nordin, D., & Abd Nasir, M. A. (2019). Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. International Journal of Hydrogen Energy, 44(6), 3395–3406. https://doi.org/10.1016/j.ijhydene.2018.06.013
Mayer, F., Bhandari, R., & Gäth, S. (2019). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708–721. https://doi.org/10.1016/j.scitotenv.2019.03.449
Mirzoyan, S., Vassilian, A., Trchounian, A., & Trchounian, K. (2018). Prolongation of H2 production during mixed carbon sources fermentation in E. coli batch cultures: New findings and role of different hydrogenases. International Journal of Hydrogen Energy, 43(18), 8739–8746. https://doi.org/10.1016/j.ijhydene.2018.03.189
Mishra, S., Roy, M., & Mohanty, K. (2019). Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives. Bioresource Technology, 292(June), 122008. https://doi.org/10.1016/j.biortech.2019.122008
Monlau, F., Kaparaju, P., Trably, E., Steyer, J. P., & Carrere, H. (2015). Alkaline pretreatment to enhance one-stage CH4and two-stage H2/CH4production from sunflower stalks: Mass, energy and economical balances. Chemical Engineering Journal, 260, 377–385. https://doi.org/10.1016/j.cej.2014.08.108
Pambudi, N. A. (2018). Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable and Sustainable Energy Reviews, 81(March 2017), 2893–2901. https://doi.org/10.1016/j.rser.2017.06.096
Papilo, P., Marimin, Hambali, E., & Sitanggang, I. S. (2018). Sustainability index assessment of palm oil-based bioenergy in Indonesia. Journal of Cleaner Production, 196, 808–820. https://doi.org/10.1016/j.jclepro.2018.06.072
Prabakar, D., K, S. S., Manimudi, V. T., Mathimani, T., Kumar, G., Rene, E. R., & Pugazhendhi, A. (2018). Pretreatment technologies for industrial effluents : Critical review on bioenergy production and environmental concerns. Journal of Environmental Management, 218, 165–180. https://doi.org/10.1016/j.jenvman.2018.03.136
Preethi, Usman, T. M. M., Rajesh Banu, J., Gunasekaran, M., & Kumar, G. (2019). Biohydrogen production from industrial wastewater: An overview. Bioresource Technology Reports, 7(July), 100287. https://doi.org/10.1016/j.biteb.2019.100287
Purwanto, A., Sušnik, J., Suryadi, F. X., & de Fraiture, C. (2018). Determining strategies for water, energy, and food-related sectors in local economic development. Sustainable Production and Consumption, 16, 162–175. https://doi.org/10.1016/j.spc.2018.08.005
Rahayu, S. S., Budiyono, B., & Purwanto, P. (2018). Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor, 03010.
Rambabu, K., Show, P. L., Bharath, G., Banat, F., Naushad, M., & Chang, J. S. (2019). Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405. International Journal of Hydrogen Energy, (XXXX). https://doi.org/10.1016/j.ijhydene.2019.06.133
Rame. (2018). Oil Palm Empty Fruit Bunches (OPEFB): Existing Utilization and Current Trends Bio-Refinery in Indonesia. E3S Web of Conferences, 31, 1–5. https://doi.org/10.1051/e3sconf/20183103014
Ren, N. Q., Zhao, L., Chen, C., Guo, W. Q., & Cao, G. L. (2016). A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresource Technology, 215, 92–99. https://doi.org/10.1016/j.biortech.2016.03.124
Rogers, T., Ashtine, M., Koon Koon, R., & Atherley-Ikechi, M. (2019). Onshore wind energy potential for Small Island Developing States: Findings and recommendations from Barbados. Energy for Sustainable Development, 52, 116–127. https://doi.org/10.1016/j.esd.2019.08.002
Rosato, M. A. (2017). Managing Biogas Plants. Managing Biogas Plants. https://doi.org/10.1201/b22072
Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77(February), 59–69. https://doi.org/10.1016/j.rser.2017.03.136
Sainati, T., Locatelli, G., & Smith, N. (2019). Project financing in nuclear new build, why not? The legal and regulatory barriers. Energy Policy, 129(February), 111–119. https://doi.org/10.1016/j.enpol.2019.01.068
Sarkodie, S. A., & Strezov, V. (2019). Effect of foreign direct investments, economic development, and energy consumption on greenhouse gas emissions in developing countries. Science of the Total Environment, 646, 862–871. https://doi.org/10.1016/j.scitotenv.2018.07.365
Sarrica, M., Richter, M., Thomas, S., Graham, I., & Mazzara, B. M. (2018). Social approaches to energy transition cases in rural Italy, Indonesia and Australia: Iterative methodologies and participatory epistemologies. Energy Research and Social Science, 45(June), 287–296. https://doi.org/10.1016/j.erss.2018.07.001
Sgroi, F., Donia, E., & Alesi, D. R. (2018). Renewable energies, business models, and local growth. Land Use Policy, 72(September 2017), 110–115. https://doi.org/10.1016/j.landusepol.2017.12.028
Sharifzadeh, M., Hien, R. K. T., & Shah, N. (2019). China's roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage. Applied Energy, 235(October 2018), 31–42. https://doi.org/10.1016/j.apenergy.2018.10.087
Sikder, A., Inekwe, J., & Bhattacharya, M. (2019). Economic output in the era of changing energy-mix for G20 countries: New evidence with trade openness and research and development investment. Applied Energy, 235(June 2018), 930–938. https://doi.org/10.1016/j.apenergy.2018.10.092
Simangunsong, B. C. H., Sitanggang, V. J., Manurung, E. G. T., Rahmadi, A., Moore, G. A., Aye, L., & Tambunan, A. H. (2017). Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia. Forest Policy and Economics, 81(May 2016), 10–17. https://doi.org/10.1016/j.forpol.2017.03.022
Singh, H., Varanasi, J. L., Banerjee, S., & Das, D. (2019). Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy, 188, 116039. https://doi.org/10.1016/j.energy.2019.116039
Sinharoy, A., & Pakshirajan, K. (2020). A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renewable Energy, 147, 864–873. https://doi.org/10.1016/j.renene.2019.09.027
SIPSN. (2021). SIPSN - Sistem Informasi Pengelolaan Sampah Nasional. Retrieved May 18, 2021, from https://sipsn.menlhk.go.id/sipsn/ ?
Srivastava, N., Srivastava, M., Gupta, V. K., Ramteke, P. W., & Mishra, P. K. (2018). A novel strategy to enhance biohydrogen production using graphene oxide treated thermostable crude cellulase and sugarcane bagasse hydrolyzate under co-culture system. Bioresource Technology, 270(September), 337–345. https://doi.org/10.1016/j.biortech.2018.09.038
Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., … Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances, 37(6), 107384. https://doi.org/10.1016/j.biotechadv.2019.04.006
Steinhauser, A., & Deublein, D. (2011). Biogas from Waste and Renewables Energy: An Introduction. Industrial Biotechnology.
Suharyati, Pambudi, S. H., Wibowo, J. L., & Pratiwi, N. I. (2019). Indonesia Energy Outlook (IEO) 2019.
Suryaningsih, R., & Irhas. (2014). Bioenergy plants in Indonesia: Sorghum for producing bioethanol as an alternative energy substitute of fossil fuels. Energy Procedia, 47, 211–216. https://doi.org/10.1016/j.egypro.2014.01.216
Tang, S., Chen, J., Sun, P., Li, Y., Yu, P., & Chen, E. (2019). Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand, and Myanmar). Energy Policy, 129(September 2018), 239–249. https://doi.org/10.1016/j.enpol.2019.02.036
Tasri, A., & Susilawati, A. (2014). Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34–44. https://doi.org/10.1016/j.seta.2014.02.008
Thi, N. B. D., Lin, C. Y., & Kumar, G. (2016). Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. Journal of Cleaner Production, 122, 29–41. https://doi.org/10.1016/j.jclepro.2016.02.034
Vieira, A., Marques, R., Raposo, R., Martins, M., Craamer, P., Urchegui, G., … Oehmen, A. (2019). The impact of the art-ICA control technology on the performance, energy consumption, and greenhouse gas emissions of full-scale wastewater treatment plants, 213, 680–687. https://doi.org/10.1016/j.jclepro.2018.12.229
Winter, F., Agarwal, R. A., Hrdlicka, J., & Varjani, S. (2019). Introduction to CO2 Separation, Purification, and Conversion to Chemicals and Fuels. https://doi.org/10.1007/978-981-13-3296-8_1
Wu, X., Wu, K., Zhang, Y., Hong, Q., Zheng, C., Gao, X., & Cen, K. (2017). Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in China. Journal of Cleaner Production, 142, 3236–3242. https://doi.org/10.1016/j.jclepro.2016.10.146
Xiang, D., Yang, S., & Qian, Y. (2016). Techno-economic analysis and comparison of coal-based olefins processes. Energy Conversion and Management, 110, 33–41. https://doi.org/10.1016/j.enconman.2015.12.011
Yadav, P., Pandey, K., Bhatt, V., Kumar, M., & Kim, J. (2017). Critical aspects of impedance spectroscopy in silicon solar cell characterization: A review. Renewable and Sustainable Energy Reviews, 76(November 2015), 1562–1578. https://doi.org/10.1016/j.rser.2016.11.205
Zabaniotou, A. (2018). Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. Journal of Cleaner Production, 177, 197–206. https://doi.org/10.1016/j.jclepro.2017.12.172
Zabek, D., & Morini, F. (2019). Solid-state generators and energy harvesters for waste heat recovery and thermal energy harvesting. Thermal Science and Engineering Progress, 9(November 2018), 235–247. https://doi.org/10.1016/j.tsep.2018.11.011
Zhang, X., Bauer, C., Mutel, C. L., & Volkart, K. (2017). Life Cycle Assessment of Power-to-Gas: Approaches, system variations, and their environmental implications. Applied Energy, 190, 326–338. https://doi.org/10.1016/j.apenergy.2016.12.098
Zuli Pratiwi, W., Hadiyanto, H., Purwanto, P., & Nur Fadlilah, M. (2020). Bioelectricity production from tofu wastewater using microbial fuel cells with microalgae Spirulina sp as catholyte. E3S Web of Conferences, 202. https://doi.org/10.1051/e3sconf/202020208007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rame Rame, Purwanto Purwanto, Sudarno Sudarno
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.