Preliminary Study of Synthesis of Sodium Manganese Oxide Using Sol-Gel Method as Sodium Ion Battery Material

Authors

  • Susanto Sigit Rahardi B4T
  • Muhammad Ilham Bayquni
  • Bambang Sunendar Purwasasmita

DOI:

https://doi.org/10.21771/jrtppi.2020.v11.no2.p28-34

Keywords:

sodium manganese oxide, sol-gel method, salt

Abstract

Sodium ion battery is one of the promising alternatives to lithium ion battery. Sodium manganese oxide as the sodium ion battery catode material has been synthesized by modifying the sol-gel method used to obtain lithium manganese oxide. The precursors used were table salt and manganese chloride. The sol-gel process used was water solvent, citric acid as a chelating agent and chitosan as the template. Thermal decomposition and formation zone obtained from simple thermal analysis using furnace and digital scales. Calcination was carried out at 600°C and 850°C for 2 hours. Crystal properties and morphology were analyzed using XRD and SEM. Based on the analysis of XRD pattern, sodium manganese oxide crystals (Na0.7MnO2.05 JCPDS 27-0751) have been formed at both of the calcination temperature. Observed morphology of the sample showed the domination Mn3O4 JCPDS 18-0803 in accordance with crystalline phase identification. These results demonstrate that the modified sol-gel method could be used to obtain sodium manganese oxide as sodium ion battery cathode material.

References

Adamczyk, E., & Pralong, V. (2017). Na2Mn3O7 : A Suitable Electrode Material for Na-Ion Batteries? American Chemical Society, 29, 4645–4648. https://doi.org/10.1021/acs.chemmater.7b01390

Armstrong, A. R., & Bruce, P. G. (1996). Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries.pdf. Nature. https://doi.org/doi.org/10.1038/381499a0

Balai Besar Bahan dan Barang Teknik. (2020). Laporan Kegiatan Riset Baterai - LK-A-08 - Produksi Litium Mangan Oksida Skala Lab yang Diperbesar sebagai Material Aktif Baterai Ion Litium melalui Metode Sol-Gel. Bandung.

Danks, A. E., Hall, S. R., & Schnepp, Z. (2016). The Evolution of Sol-Gel Chemistry as A Technique for Materials Synthesis. Materials Horizons, 3, 91–112. https://doi.org/10.1039/C5MH00260E

Ernowo, Sunuhadi, D. N., & Awaludin, M. (2020). Ketersediaan Nikel dan Kobalt untuk Bahan Industri Baterei Listrik di Indonesia. Retrieved from http://psdg.geologi.esdm.go.id/index.php?option=com_content&view=article&id=1214&Itemid=610

Gu, F., Yao, X., Sun, T., Fang, M., Shui, M., Shu, J., & Ren, Y. (2020). Studies on micron‑sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium‑ion batteries. Applied Physics A, 1–8. https://doi.org/10.1007/s00339-020-03799-6

Guo, S., Yu, H., Jian, Z., Liu, P., Zhu, Y., & Guo, X. (2014). A High-Capacity , Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries. Chemsuschem, 210093, 2115–2119. https://doi.org/10.1002/cssc.201402138

Hou, Y., Tang, H., Li, B., Chang, K., Chang, Z., Yuan, X., & Wang, H. (2015). Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Materials Chemistry and Physics, 1–8. https://doi.org/10.1016/ j.matchemphys.2015.12.009

Hwang, J., Myung, S., & Sun, Y. (2017). Sodium-ion batteries : present and future. Chemical Society Reviews. https://doi.org/10.1039/c6cs00776g

Lee, M., Lee, S., Oh, P., Kim, Y., & Cho, J. (2014). High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. American Chemical Society, 14, 993–999.

Liu, C., Neale, Z. G., & Cao, G. (2016). Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 19(2), 109–123. https://doi.org/10.1016/j.mattod.2015.10.009

Liu, W., Farrington, G. C., Chaput, F., & Dunn, B. (1996). Synthesis and Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared by the Pechini Process Synthesis and Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared by the Pechini Process. Journal of The Electrochemical Society, 143(3), 879–884. https://doi.org/10.1149/1.1836552

Lu, D., Yao, Z. J., Li, Y. Q., Zhong, Y., Wang, X. L., Xie, D.,Tu, J. P. (2020). Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. Colloid and Interface Science, 565, 218–226. https://doi.org/10.1016/j.jcis.2020.01.023

Nishi, Y. (2001). Lithium ion secondary batteries; Past 10 years and the future. Journal of Power Sources, 100(1–2), 101–106. https://doi.org/10.1016/S0378-7753(01)00887-4

Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today, 18(5), 252–264. https://doi.org/10.1016/ j.mattod.2014.10.040

Parker, J. F., Chervin, C. N., Pala, I. R., Machler, M., Burz, M. F., Long, J. W., & Rolison, D. R. (2017). Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion (Vol. 418).

Pegeng, Z., Huiqing, F. A. N., Yunfei, F. U., Zhuo, L. I., & Yongli, D. (2006). Synthesis and electrochemical properties of sol-gel derived LiMn,O, cathode for lithium-ion batteries, 25, 0–4.

Rahardi, S. S. (2016). Sintesis litium mangan oksida melalui metode sol gel dengan bio template selulosa bakteri sebagai bahan katoda baterai ion litium (Thesis Master). Institut Teknologi Bandung.

Salim, Z., & Munadi, E. (2016). Info Komoditi Garam. Jakarta: Badan Pengkajian dan Pengembangan Perdagangan, Kementerian Perdagangan Republik Indonesia. Retrieved from http:// bppp.kemendag.go.id/media_content/2017/08/Isi_BRIK_Garam.pdf

Song, B., Tang, M., Hu, E., Borkiewicz, O. J., Wiaderek, K. M., Hu, Y., Liu, J. (2019). Understanding the Low-Voltage Hysteresis of Anionic Redox in Na2Mn3O7. American Chemical Society, 31, 3756–3765. https://doi.org/10.1021/acs.chemmater.9b00772

Sun, Y. (1997). Synthesis of Spinel LiMn2O4 by the Sol - Gel Method for a Cathode-Active Material in Lithium Secondary Batteries. American Chemical Society, 4839–4846. https://doi.org/10.1021/ie970227b

Supriadi, A., Sunarti, Kencono, A. W., Kurniasih, T. N., Prasetyo, B. E., Kurniawan, F., Anggraeni, D. (2017). Kajian Dampak Hilirisasi Mineral Mangan Terhadap Perekonomian Regional. Jakarta: Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral.

Thackeray, M. M., & Rossouw, M. H. (1994). Synthesis of Lithium-Manganese-Oxide Spinels : A Study by Thermal Analysis. Journal of Solid State Chemistry, 441–443. https://doi.org/10.1006/jssc.1994.1393

Xiao, N., Mcculloch, W. D., & Wu, Y. (2017). Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. American Chemical Society, 0–3. https://doi.org/ 10.1021/jacs.7b04945

Zheng, P., Su, J., Wang, Y., Zhou, W., Song, J., Su, Q., Guo, S. (2020). A high-performance primary nanosheet heterojunction cathode composed of Na0.44MnO2 tunnels and layered Na2Mn3O7 for Na-ion batteries. Chemsuschem.https://doi.org/10.1002/cssc.201903543

Published

2020-11-19

How to Cite

Rahardi, S. S., Muhammad Ilham Bayquni, & Bambang Sunendar Purwasasmita. (2020). Preliminary Study of Synthesis of Sodium Manganese Oxide Using Sol-Gel Method as Sodium Ion Battery Material. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 11(2), 28–34. https://doi.org/10.21771/jrtppi.2020.v11.no2.p28-34

Issue

Section

Articles