Activated Carbon of Coconut Shell Modified TiO2 as a Batik Waste Treatment
DOI:
https://doi.org/10.21771/jrtppi.2020.v11.no2.p1-10Keywords:
activated carbon, coconut shell, TiO2, batik wasteAbstract
Research about the modification of activated carbon of coconut shell with TiO2 as a waste treatment Batik has been done. The purpose of this study was to determine the effect of modified TiO2 on activated carbon characteristics and the effect of TiO2 concentration on the adsorption power of activated carbon in batik waste. The method utilized was activated carbon soaked in TiO2 with 5% and 10% concentrations in a ratio of 1: 5, then stirred with a magnetic stirrer for 2 hours. Next, the mixture was placed in an autoclave bottle and an oven (200°C for 30 minutes). The results were then washed with distilled water and dried (100°C for 5 hours), then the material was characterized by FTIR, XRD, SEM-EDX, and application to batik waste. FTIR results indicated the presence of Ti-O-Ti groups after modification at wave number 682 cm-1, XRD indicated the presence of a combination of amorphous KA and crystalline TiO2 at 25,2°; 37,7°; 48,1°; 53,8°; and 55°, and SEM results of TiO2 agglomeration on the surface of the railroad. Adsorption of batik waste showed KATiO2-10 (0,052) lower than KA (0,059) and KATiO2-5 (0,057), as well as the presence of COD KA results = 705,6 mg / L (pH = 8), KATiO2-5 = 504,0 mg / L (pH pH = 7) and KATiO2-10= 403,2 mg / L (pH = 7). Based on this research, the activated carbon modified TiO2 can be used as a material for processing batik waste with the most significant concentration of TiO2 represent 10%.References
Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381–S3393.
Anisuzzaman, S. M., Joseph, C. G., Taufiq-Yap, Y. H., Krishnaiah, D., & Tay, V. V. (2015). Modification of commercial activated carbon for the removal of 2, 4-dichlorophenol from simulated wastewater. Journal of King Saud University-Science, 27(4), 318–330.
Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., … Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117–125.
Dey, N. K., Kim, M. J., Kim, K.-D., Seo, H. O., Kim, D., Kim, Y. D., … Lee, K. H. (2011). Adsorption and photocatalytic degradation of methylene blue over TiO2 films on carbon fiber prepared by atomic layer deposition. Journal of Molecular Catalysis A: Chemical, 337(1–2), 33–38.
He, Z., Cai, Q., Fang, H., Situ, G., Qiu, J., Song, S., & Chen, J. (2013). Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. Journal of Environmental Sciences, 25(12), 2460–2468.
Hidayu, A. R., & Muda, N. (2016). Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering, 148, 106–113.
Ikawati, I., & Melati, M. (2010). Pembuatan Karbon Aktif dari Limbah Kulit Singkong UKM Tapioka Kabupaten Pati.
Irwan, I., Lubis, S., Ramli, M., & Sheilatina, S. (2016). Photocatalytic degradation of indigo carmine by TiO2/activated carbon derived from waste coffee grounds. Jurnal Natural, 16(1).
Le, H. A., Chin, S., & Jurng, J. (2012). Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technology, 225, 167–175.
MiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341, 404–423.
Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., & Wicaksono, K. A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 21, 77–83.
Mulyati, T. A. (2018). PREPARASI DAN KARAKTERISASI KARBON AKTIF DARI LIMBAH AMPAS TEBU MENGGUNAKAN AKTIVATOR KOH. Indonesian Chemistry and Application Journal, 1(2), 61–67.
Nasution, N., & Fitri, A. (n.d.). SINTESIS NANOPARTIKEL TiO2 FASA RUTILE DENGAN METODE KOPRESIPITASI.
Ndi Nsami, J., & Ketcha Mbadcam, J. (2013). The adsorption efficiency of chemically prepared activated carbon from cola nut shells by on methylene blue. Journal of Chemistry, 2013.
Omo-Okoro, P. N., Daso, A. P., & Okonkwo, J. O. (2018). A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environmental Technology & Innovation, 9, 100–114.
Orha, C., Pode, R., Manea, F., Lazau, C., & Bandas, C. (2017). Titanium dioxide-modified activated carbon for advanced drinking water treatment. Process Safety and Environmental Protection, 108, 26–33.
Pujiono, F. E., Mulyati, T. A., & Fizakia, M. N. (2019). Modification of activated carbon with titanium dioxide as a water treatment material. Journal of Public Health in Africa, 10.
Pujiono, F., & Mulyati, T. A. (2017). Potensi Karbon Aktif dari Limbah Pertanian Sebagai Material Pengolahan Air Limbah. Jurnal Wiyata: Penelitian Sains Dan Kesehatan, 4(1), 37–44.
Rahmawati, N. I., Suhartana, S., & Gunawan, G. (2009). Pengolahan Limbah Cair Industri Batik dengan Metoda Elektrokoagulasi Menggunakan Seng Bekas Sebagai Elektroda. Jurnal Kimia Sains Dan Aplikasi, 12(2), 40–46.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919–9986.
Simonetti, E. A. N., de Simone Cividanes, L., da Silva Fonseca, B. C., de Freitas, A. P. B. R., dos Reis Coutinho, A., & Thim, G. P. (2018). TiO2Carbon composite using coconut waste as carbon source: Sonocatalysis and adsorption evaluation. Surfaces and Interfaces, 12, 124–134.
Skocaj, M., Filipic, M., Petkovic, J., & Novak, S. (2011). Titanium dioxide in our everyday life; is it safe? Radiology and Oncology, 45(4), 227–247.
Subramani, A. K., Byrappa, K., Ananda, S., Rai, K. M. L., Ranganathaiah, C., & Yoshimura, M. (2007). Photocatalytic degradation of indigo carmine dye using TiO 2 impregnated activated carbon. Bulletin of Materials Science, 30(1), 37–41.
Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. ArXiv Preprint ArXiv:1307.1091.
Wibowo, S., Syafi, W., & Pari, G. P. (2011). Karakterisasi permukaan arang aktif tempurung biji nyamplung. Makara Journal of Technology, 15(1).
Yukselen, Y., & Kaya, A. (2008). Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Engineering Geology, 102(1–2), 38–45.
Yukselen, Y., Kaya, A., He, Z., Cai, Q., Fang, H., Situ, G., … Gunawan, G. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Powder Technology, 12(1), 167–175.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Fery Eko Pujiono, Tri Ana Mulyati, Miftakhul Nor Fizakia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.