DOAS Calibration Technique for SO2 Emission Measurement Based on H2SO4 and Na2SO3 Reaction

Authors

  • Januar Arif Fatkhurrahman Master Degree Programme, Environmental Engineering, Institut Teknologi Bandung
  • Ikha Rasti Julia Sari Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Yose Andriani Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Moh Syarif Romadhon Atmospheric, Oceanic and Planetary Physics Department, University of Oxford
  • Nur Zen Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Adi Prasetio Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Ali Murtopo Simbolon Departement of Environmental Engineering, Diponegoro University

DOI:

https://doi.org/10.21771/jrtppi.2020.v11.no1.p36-45

Keywords:

DOAS, sulfur dioxide, spectroscopy, optical measurement, horwitz ratio

Abstract

The coal used as a primary fuel in an Indonesian power plant produces sulfur dioxide emission from its burning process. Several testing and monitoring methods developed, from laboratory analysis, CEMs based instrument, and absorption spectroscopy method developed for this purpose. Differential Optical Absorption Spectroscopy (DOAS) method based on Lambert-Beer law used as emission quantification. DOAS instrumentation developed in this research to measure sulfur dioxide as one of the emission parameters. Sulfur dioxide generated from the reaction between the sulfuric acid and dilute sodium sulfite. CCD spectrometer used to measure sulfur dioxide spectrum intensity at 260 to 350 nm absorption cross-section. There is a high correlation between sulfur dioxide gas produced by that reaction to spectrum intensity, with coefficient determination (r2) 0.9783, 0.9822, 0.9866, 0.9928 or coefficient correlation (r) 0.989, 0.991, 0.993, and 0.996 from lowest range concentration to highest range concentration. Precision analysis from gas calibration standard using Horwitz ratio indicates instrument setup precise enough with 0.504 Horwitz ratio, according to its acceptable range. The suspended particulate matter may interfere with UV penetration into CCD detector in emission simulation test using gasoline generator exhaust that causes 2.5 times deviation error between typical 800 ppm concentrated sulfur dioxide from chemical reaction and gasoline generator exhaust.

Author Biographies

Januar Arif Fatkhurrahman, Master Degree Programme, Environmental Engineering, Institut Teknologi Bandung

1Master Degree Programme, Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung
2The Centre of Industrial Pollution Prevention Technology, Jalan Ki Mangunsarkoro No. 6, Semarang, Central Java  

Moh Syarif Romadhon, Atmospheric, Oceanic and Planetary Physics Department, University of Oxford

1Atmospheric, Oceanic and Planetary Physics Department, University of Oxfor 2The Centre of Industrial Pollution Prevention Technology, Jalan Ki Mangunsarkoro No. 6, Semarang, Central Java

Ali Murtopo Simbolon, Departement of Environmental Engineering, Diponegoro University

1Departement of Environmental Engineering, Diponegoro University 2The Centre of Industrial Pollution Prevention Technology, Jalan Ki Mangunsarkoro No. 6, Semarang, Central Java  

References

Abrash, S. A. (2020). Preparation and Properties of Pollutant Gases. Richmond, Virginia. Retrieved from https://facultystaff.richmond.edu/~sabrash/

Akoglu, H. (2018, September 1). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine. Emergency Medicine Association of Turkey. https://doi.org/10.1016/j.tjem.2018.08.001

Al-Jalal, A. A., Al-Basheer, W., Gasmi, K., & Romadhon, M. S. (2019). Measurement of low concentrations of NO2 gas by differential optical absorption spectroscopy method. Measurement: Journal of the International Measurement Confederation, 146, 613–617. https://doi.org/10.1016/j.measurement.2019.07.022

Caro, G. M. M., Mateo-Martí, E., & Martínez-Frías, J. (2006). Near-UV Transmittance of Basalt Dust as an Analog of the Martian Regolith: Implications for Sensor Calibration and Astrobiology. Sensors (Basel, Switzerland), 6(6), 688.

Chan, K. L., Pöhler, D., Kuhlmann, G., Hartl, A., Platt, U., & Wenig, M. (2012). NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy. Atmospheric Measurement Techniques, 4, 901–912. https://doi.org/10.5194/amt-5-901-2012

Chou, C. L. (2012, October 1). Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology. Elsevier. https://doi.org/10.1016/j.coal.2012.05.009

Christensen, J., & Linden, K. G. (2003). How particles affect UV light in the UV disinfection of unfiltered drinking water. Journal / American Water Works Association, 95(4), 179–189. https://doi.org/10.1002/j.1551-8833.2003.tb10344.x

Clapsaddle, C. (2002). Continuous Particulate Matter Emission Monitoring Using PM CEMs. In EMC 2002 Workshop. Retrieved from https://www3.epa.gov/ttn/emc/meetnw/2002/clapsaddle.pdf

Elliott, M. A., Nebel, G. J., & Rounds, F. G. (1955). The composition of exhaust gases from diesel, gasoline and propane powered motor coaches. Journal of the Air Pollution Control Association, 5(2), 103–108. https://doi.org/10.1080/00966665.1955.10467686

Emmerich, Wang, & Persily. (2017). Measured carbon monoxide concentrations from stock and reduced-emission prototype portable generators operated in an attached garage. Journal of the Air & Waste Management Association, 67(8), 889–898. https://doi.org/10.1080/10962247.2017.1300202

Fatkhurrahman, J. A., & Juliasari, I. R. (2016). LOW COST PARTICULATE VERIFICATION AS PARTICULATE SENSOR ON WET SCRUBBER MODIFICATION TECHNOLOGY. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 7(1), 30–36.

Furukawa, H., & Fukuda, T. (2012). In vivo absorption spectroscopy for absolute measurement. Biomedical Optics Express, 3(10), 2587. https://doi.org/10.1364/boe.3.002587

Hasenfratz, D., Saukh, O., & Thiele, L. (2012). On-the-fly calibration of low-cost gas sensors. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7158 LNCS, pp. 228–244). https://doi.org/10.1007/978-3-642-28169-3_15

Horwitz, W., & Albert, R. (2006). The Horwitz ratio (HorRat): A useful index of method performance with respect to precision. Journal of AOAC International, 89(4), 1095–1109.

Hu, Y., Wen, Y., & Wang, X. (2016). Detection of water quality multi-parameters in seawater based on UV-Vis spectrometry. In OCEANS 2016 - Shanghai. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/OCEANSAP.2016.7485737

Levelt, P. F., Van Den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., De Vries, J., … Saari, H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093–1100. https://doi.org/10.1109/TGRS.2006.872333

Lin, C. K., Lin, R. T., Chen, P. C., Wang, P., De Marcellis-Warin, N., Zigler, C., & Christiani, D. C. (2018). A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-20404-2

Margelli, F., & Giovanelli, G. (2002). Calibration And Validation Methods For DOAS Remote Sensing Systems. WIT Transactions on Ecology and the Environment, 53. https://doi.org/10.2495/AIR020381

Mellqvist, J., & Rosén, A. (1996). DOAS for flue gas monitoring - II. Deviations from the Beer-Lambert law for the U.V./visible absorption spectra of NO, NO2, SO2 and NH3. Journal of Quantitative Spectroscopy and Radiative Transfer, 56(2), 209–224. https://doi.org/10.1016/0022-4073(96)00043-X

Mohajan, H. (2019). Acid Rain is a Local Environment Pollution but Global Concern, 3, 47–55.

Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71.

Peterka, B., Pexa, M., Čedík, J., Mader, D., & Kotek, M. (2017). Comparison of exhaust emissions and fuel consumption of small combustion engine of portable generator operated on petrol and biobutanol. Agronomy Research, 15, 1162–1169.

Platt, U. (2006). Differential Optical Absorption Spectroscopy, Air Monitoring by. In Encyclopedia of Analytical Chemistry. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a0706

Platt, U. (2017). Air Monitoring by Differential Optical Absorption Spectroscopy. In Encyclopedia of Analytical Chemistry (pp. 1–28). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a0706.pub2

Platt, U., & Perner, D. (1983). MEASUREMENTS OF ATMOSPHERIC TRACE GASES BY LONG PATH DIFFERENTIAL UV/VISIBLE ABSORPTION SPECTROSCOPY. Springer Series in Optical Sciences, 39, 97–105. https://doi.org/10.1007/978-3-540-39552-2_13

Platt, U., & Stutz, J. (Jochen). (2008). Differential optical absorption spectroscopy : principles and applications. Springer Verlag.

Poole, C. F. (2015). Mahmood Barbooli (Ed.): Environmental Applications of Instrumental Chemical Analysis. Chromatographia, 78(21–22), 1415–1416. https://doi.org/10.1007/s10337-015-2945-4

Ratner, B. (2009). The correlation coefficient: Its values range between 1/1, or do they. Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139–142. https://doi.org/10.1057/jt.2009.5

Rivera, C., Garcia, J. A., Galle, B., Alonso, L., Yan, Z., Johansson, M., … Gangoiti, G. (2009). Validation of optical remote sensing measurement strategies applied to industrial gas emissions. International Journal of Remote Sensing, 30(12), 3191–3204. https://doi.org/10.1080/01431160802558808

Romadhon, M. S. (2015). DEVELOPMENT OF A DETECTOR FOR TRACE AMOUNT OF NITROGEN DIOXIDE USING LIGHT EMITTING DIODE. KING FAHD UNIVERSITY OF PETROLEUM & MINERALS.

Shepherd, M. A., Haynatzki, G., Rautiainen, R., & Achutan, C. (2015). Estimates of community exposure and health risk to sulfur dioxide from power plant emissions using short-term mobile and stationary ambient air monitoring. Journal of the Air & Waste Management Association, 65(10), 1239–1246. https://doi.org/10.1080/10962247.2015.1077174

Souza, S. n. M. De, Lenz, A. M., Werncke, I., Nogueira, C. e. C., Antonelli, J., & Souza, J. de. (2016). Gas emission and efficiency of an engine-generator set running on biogas. Engenharia Agrícola, 36(4), 613–621. https://doi.org/10.1590/1809-4430-eng.agric.v36n4p613-621/2016

Sudalma, S., Purwanto, P., & Santoso, L. W. (2015). The Effect of SO2 and NO2 from Transportation and Stationary Emissions Sources to SO42− and NO3− in Rain Water in Semarang. Procedia Environmental Sciences, 23, 247–252. https://doi.org/10.1016/j.proenv.2015.01.037

Theys, N., De Smedt, I., van Gent, J., Danckaert, T., Wang, T., Hendrick, F., … Van Roozendael, M. (2015). Sulfur dioxide vertical column DOAS retrievals from the Ozone Monitoring Instrument: Global observations and comparison to ground-based and satellite data. Journal of Geophysical Research: Atmospheres, 120(6), 2470–2491. https://doi.org/10.1002/2014JD022657

Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., … Van Roozendael, M. (2019). Global monitoring of volcanic SO 2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39279-y

US EPA, O. EMC Conditional Test Methods (CTM-022), Pub. L. No. CTM-022 (1995). United States. Retrieved from https://www.epa.gov/emc/emc-conditional-test-methods

US EPA, O. (2017). Method 6 - Sulfur Dioxide. Retrieved from https://www.epa.gov/emc/method-6-sulfur-dioxide

US EPA, O. Method 7E - Nitrogen Oxide - Instrumental Analyzer (2018). United States. Retrieved from https://www.epa.gov/emc/method-7e-nitrogen-oxide-instrumental-analyzer

Wang, C., Xing, D., Zeng, L., Ding, C., & Chen, Q. (2005). Effect of artificial acid rain and SO2 on characteristics of delayed light emission. Luminescence, 20(1), 51–56. https://doi.org/10.1002/bio.806

Zhang, X., Fang, Y., & Zhao, Y. (2013). A Portable Spectrophotometer for Water Quality Analysis. Sensors and Transducers, 148, 47–51.

Downloads

Published

2020-05-21

How to Cite

Fatkhurrahman, J. A., Sari, I. R. J., Andriani, Y., Romadhon, M. S., Zen, N., Prasetio, A., & Simbolon, A. M. (2020). DOAS Calibration Technique for SO2 Emission Measurement Based on H2SO4 and Na2SO3 Reaction. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 11(1), 36–45. https://doi.org/10.21771/jrtppi.2020.v11.no1.p36-45

Issue

Section

Articles