Analysis of Water Losses in the Jimat Irrigation Area, Wonosobo Regency

Authors

  • Nasyiin Faqih Universitas Sains Al-Qur’an (UNSIQ) Wonosobo, Jawa Tengah
  • Fadhilah Ilham Ulumudin Universitas Sains Al-Qur’an (UNSIQ) Wonosobo, Jawa Tengah
  • Ashal Abdussalam Universitas Sains Al-Qur’an (UNSIQ) Wonosobo, Jawa Tengah
  • Mochammad Qomaruddin Universitas Islam Nahdlatul Ulama (UNISNU) Jepara, Jawa Tengah
  • Musthofa Universitas Bojonegoro (UNIGORO), Jawa Timur

DOI:

https://doi.org/10.21771/jrtppi.2025.v16.no2.p105-112

Keywords:

Irrigation, Water Losses, Jimat Irrigation Area, Wonosobo Regency

Abstract

This study aims to analyze the actual irrigation water losses in the Jimat Irrigation Area, identify the factors causing irrigation water losses, and determine effective strategies to reduce water losses in the area. One of the important irrigation areas in this region is the Jimat Irrigation Area, which supplies water to 110 hectares of agricultural land. However, the effectiveness of water distribution is often hampered by significant water losses. The research methods used are descriptive evaluative and quantitative descriptive analysis. The descriptive evaluative method describes a study that evaluates the actual conditions of the study object. Meanwhile, the quantitative descriptive analysis method aims to accurately describe the characteristics of the study object.Based on the analysis and calculations, the Jimat Irrigation Area requires an actual irrigation water supply of 0.812 m³/second to serve its four tertiary canals, with the highest allocation going to Tertiary Channel 2 (0.465 m³/second) and the lowest to Tertiary Channel 4 (0.084 m³/second). However, only 54% of the initial discharge of the primary canal (1.702 m³/second at the Upstream Intake) actually reaches the agricultural land. A total of 46% of the water (0.686 m³/second) is lost along the primary network, with seepage accounting for 99.94% of the water loss, particularly in critical sections such as Primary Channel V, which lost 59% of its discharge. Meanwhile, the contribution of evaporation is minimal (0.06%) due to the limited water surface area and low daily evaporation rate (2.76 mm/day).

References

Adekalu, K. O., Olorunfemi, I. A., & Osunbitan, J. A. (2007). Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresource Technology, 98(4), 912–917. https://doi.org/10.1016/j.biortech.2006.02.044

Chirol, C., Haigh, I. D., Pontee, N., Thompson, C. E., & Gallop, S. L. (2018). Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from lidar. Remote Sensing of Environment, 209, 291–311. https://doi.org/https://doi.org/10.1016/j.rse.2017.11.012

Dewan, A., Corner, R., Saleem, A., Rahman, M. M., Haider, M. R., Rahman, M. M., & Sarker, M. H. (2017). Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology, 276, 257–279. https://doi.org/https://doi.org/10.1016/j.geomorph.2016.10.017

Faqih, N. (2020). Civil Engineering Environmental and Disaster Risk Management Symposium ( CEE DRiMS 2020 ) Penguatan Riset dan Teknologi untuk Mewujudkan Infrastruktur yang Cerdas , Lestari , dan Tangguh. Civil Engineering, Environmental and Disaster Risk Management Symposium 2020, 118–221.

Faqih, N., Abdussalam, A., & Indriyati, O. (2019). Potential Analysis of Muncar River for Utilization of Micro Hidro Power Plant ( MHPP ). 2(5), 1–8.

Gao, Y., & Zhao, J. (2023). Farm DESIGN Manual. In Aleph (Vol. 87, Issue 1,2). https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/167638/341506.pdf?sequence=1&isAllowed=y%0Ahttps://repositorio.ufsm.br/bitstream/handle/1/8314/LOEBLEIN%2C LUCINEIA CARLA.pdf?sequence=1&isAllowed=y%0Ahttps://antigo.mdr.gov.br/saneamento/proees

Heibaum, M. (2014). Geosynthetics for waterways and flood protection structures – Controlling the interaction of water and soil. Geotextiles and Geomembranes, 42(4), 374–393. https://doi.org/https://doi.org/10.1016/j.geotexmem.2014.06.003

Hermawan, J. P., Dwisusanto, Y. B., & Faqih, N. (2022). Changing meanings of hearths in vernacular highland houses in Indonesia. ISVS E-Journal, 9(2), 130–145.

Hulley, G. C., Hook, S. J., & Baldridge, A. M. (2010). Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sensing of Environment, 114(7), 1480–1493. https://doi.org/https://doi.org/10.1016/j.rse.2010.02.002

Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., Hübl, J., Miyata, S., Smith, J. B., & Yin, H.-Y. (2019). Debris-flow monitoring and warning: Review and examples. Earth-Science Reviews, 199, 102981. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.102981

Lyu, Y., Zheng, S., Tan, G., & Shu, C. (2018). Effects of Three Gorges Dam operation on spatial distribution and evolution of channel thalweg in the Yichang-Chenglingji Reach of the Middle Yangtze River, China. Journal of Hydrology, 565, 429–442. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.08.042

Mushthofa, M., Indriani, Y., Nisa, K., Roesdina, T., Qomaruddin, M., & Faqih, N. (2024). The Influence Of Sedimentation On The Use Of The Pacal Reservoir In Bojonegoro District, East Java, Indonesia. Journal of Renewable Engineering, 1(3), 19–32.

Mwesigye, A. R., Parlak, M., Aprisal, Patiño-Gutiérrez, S. E., Rivas, M., Yiğit, B. M., Li, S. X., Bouma, J., Sofo, A., Yousefi, H., Holzkämper, A., Cram, A., Vance, R. W., Alyokhin, A., & Aprisal. (2020). Soil conservation practices for insect pest management in highly disturbed agroecosystems – a review. International Journal of GEOMATE, 168(2), 7–27. https://doi.org/10.1111/eea.12863

Nishigaki, T., Shibata, M., Sugihara, S., Mvondo-Ze, A. D., Araki, S., & Funakawa, S. (2017). Effect of Mulching with Vegetative Residues on Soil Water Erosion and Water Balance in an Oxisol Cropped by Cassava in East Cameroon. Land Degradation and Development, 28(2), 682–690. https://doi.org/10.1002/ldr.2568

Pickup, G., Chewings, V. H., & Nelson, D. J. (1993). Estimating changes in vegetation cover over time in arid rangelands using landsat MSS data. Remote Sensing of Environment, 43(3), 243–263. https://doi.org/https://doi.org/10.1016/0034-4257(93)90069-A

Pope, K. O., Sheffner, E. J., Linthicum, K. J., Bailey, C. L., Logan, T. M., Kasischke, E. S., Birney, K., Njogu, A. R., & Roberts, C. R. (1992). Identification of central Kenyan Rift Valley Fever virus vector habitats with landsat TM and evaluation of their flooding status with airborne imaging radar. Remote Sensing of Environment, 40(3), 185–196. https://doi.org/https://doi.org/10.1016/0034-4257(92)90002-2

Prosdocimi, M., Tarolli, P., & Cerdà, A. (2016). Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191–203. https://doi.org/10.1016/j.earscirev.2016.08.006

Srinivasarao, C., Kundu, S., Subha Lakshmi, C., Sudha Rani, Y., Nataraj, K., Gangaiah, B., Jaya Laxmi, M., Vijay Sankar Babu, M., Rani, U., Nagalakshmi, S., & Manasa, R. (n.d.). Cronicon EC AGRICULTURE Review Article Soil Health Issues for Sustainability of South Asian Agriculture. www.api.worldbank.org

Tomar, P. (2021). Artificial Intelligence and Iot-based Technologies for Sustainable Farming and Smart Agriculture: Tomar, Pradeep, Kaur, Gurjit: 9781799817222: Amazon.com: Books: Vol. i.

Veettil, B. K., Ward, R. D., Quang, N. X., Trang, N. T. T., & Giang, T. H. (2019). Mangroves of Vietnam: Historical development, current state of research and future threats. Estuarine, Coastal and Shelf Science, 218, 212–236. https://doi.org/https://doi.org/10.1016/j.ecss.2018.12.021

Downloads

Published

2025-12-01

How to Cite

Faqih, N., Ulumudin, F. I., Abdussalam, A., Qomaruddin, M., & Musthofa, M. (2025). Analysis of Water Losses in the Jimat Irrigation Area, Wonosobo Regency. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 16(2), 105–112. https://doi.org/10.21771/jrtppi.2025.v16.no2.p105-112