Spatial Analysis of Air Pollution Dispersion from a Stationary Source through Wind Profile: Case Study in North Sumatra

Authors

  • Yosef Barita Sar Manik President University
  • Aisyah Bestari Siswohartono Environmental Engineering, President University
  • Aulia Rizqi Aufa Rafiqi Environmental Engineering
  • Brilian Maulani Putri Environmental Engineering, President University
  • Daffa Renaldhi Chaniago Mairuhu Environmental Engineering, President University
  • Johanes Surya Utama Sede Environmental Engineering
  • Nati Nati Environmental Engineering

DOI:

https://doi.org/10.21771/jrtppi.2025.v16.no1.p70-77

Keywords:

Wind Rose, Air Pollutant, Wind Speed, Steel Industry, North Sumatra

Abstract

The iron and steel industry constitutes one of the strategic pillars of economic development. However, it is also a major contributor to global air pollution due to high-temperature fossil fuel combustion inherent in its processes. This study aims to analyze the wind characteristics surrounding a steel and iron industrial facility in North Sumatra and to predict the areas most at risk from pollutant dispersion. Meteorological data from the NASA POWER Project database, covering the period from 2021 to 2024, were processed to examine local wind profiles across two distinct seasonal periods—rainy and dry. The analysis revealed that during the rainy season, winds predominantly originated from the northwest, with moderate speeds ranging from 2.10 to 3.60 m/s, leading to pollutant dispersion mainly toward the southeast (145°, 40%). Conversely, in the dry season, wind direction was more variable, as indicated by a low resultant vector percentage (11%), suggesting multidirectional pollutant spread. Across both seasons, the majority of wind speeds were below 2.10 m/s, which limits vertical atmospheric mixing and enhances pollutant retention near the surface. Air stagnation, particularly during transitional periods between seasons and under temperature inversion conditions, further intensifies pollutant accumulation. These findings underscore the critical role of seasonal wind dynamics in air pollution behavior and provide a scientific foundation for developing effective mitigation strategies. Practical policy implications include the establishment of buffer zones in downwind residential or agricultural areas, the implementation of stricter emission controls during periods of low wind speed and stagnation, and the integration of local wind data into early warning systems for air quality. Such measures are essential to protect public health, especially in high-density areas surrounding PT X, including Medan City, Deli Serdang Regency, Serdang Bedagai Regency, and Tebing Tinggi City.

References

Amravati, in. (2020). Application of Wind Rose model in Environmental Impact Assessment of Air Quality in Amravati. In JETIRDI06020 Journal of Emerging Technologies and Innovative Research (Vol. 7). JETIR. www.jetir.org

Augustin, P., Billet, S., Crumeyrolle, S., Deboudt, K., Dieudonné, E., Flament, P., Fourmentin, M., Guilbaud, S., Hanoune, B., Landkocz, Y., Méausoone, C., Roy, S., Schmitt, F. G., Sentchev, A., & Sokolov, A. (2020). Impact of sea breeze dynamics on atmospheric pollutants and their toxicity in industrial and urban coastal environments. Remote Sensing, 12(4). https://doi.org/10.3390/rs12040648

BPS Kota Medan. (2023). Direktori Industri Besar dan Sedang Kota Medan 2023.

BPS Sumatera Utara. (2023). Direktori Perusahaan Industri Manufaktur Provinsi Sumatera Utara 2023.

Dehkhoda, N., Sim, J., Shin, J., Joo, S., Cho, S. H., Kim, J. H., & Noh, Y. (2024). Air Pollution Measurement and Dispersion Simulation Using Remote and In Situ Monitoring Technologies in an Industrial Complex in Busan, South Korea. Sensors, 24(23). https://doi.org/10.3390/s24237836

Hellan, S. P., Lucas, C. G., & Goddard, N. H. (2020). Optimising Placement of Pollution Sensors in Windy Environments. http://arxiv.org/abs/2012.10770

Huboyo, H. S., Khasanah, N., Samadikun, B. P., & Astuti, W. (2023). Study of the dispersion of particulate emissions from industrial areas and its impact on surrounding residential areas. IOP Conference Series: Earth and Environmental Science, 1268(1). https://doi.org/10.1088/1755-1315/1268/1/012070

Jin, M.-Y., Zhang, L.-Y., Peng, Z.-R., He, H.-D., Kumar, P., & Gallagher, J. (2024). The impact of dynamic traffic and wind conditions on green infrastructure performance to improve local air quality. Science of The Total Environment, 917, 170211. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170211

Kepmen LH No.13. (1995). Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 Tentang : Baku Mutu Emisi Sumber Tidak Bergerak.

Lapere, R., Menut, L., Mailler, S., & Huneeus, N. (2021). Seasonal variation in atmospheric pollutants transport in central Chile: Dynamics and consequences. Atmospheric Chemistry and Physics, 21(8), 6431–6454. https://doi.org/10.5194/acp-21-6431-2021

Li, Z., Tanzer-Gruener, R., Presto, A., Adams, P., & Singh, S. (2022). Simulations of near-source wind development and pollution dispersion over complex terrain under different thermal conditions. http://arxiv.org/abs/2211.07050

Margareta Sitohang, R., & Raflie Pahlevi, A. (2023). Visualisasi Perbandingan Data Angin Observasi dan Data Model INA-WAVE dengan Metode Wind Rose Menggunakan Software WRPLOT Comparative Visualization of Wind Data Observation and INA-WAVE Model Data with Wind Rose Method Using WRPLOT Software. In JULI (Vol. 4, Issue 4).

Nufus, H., & Nyoman Soemeinaboedhy, I. (2022). Pengaruh Angin Muson Australia Terhadap Sifat Hujan Pada Musim Kemarau di Wilayah Lombok The Influence of the Australian Monsoon Wind on the Characteristic of Rain in the Dry Season in the Lombok Region. https://power.larc.nasa.gov/data-acces-viewer/.

Permen LHK No.13. (2021). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor 13 Tahun 2021 Tentang: Sistem Informasi Pemantauan Emisi Industri Secara Terus Menerus. www.peraturan.go.id

Ren, H., Dong, W., Zhang, Q., & Cheng, J. (2023). Identification of priority pollutants at an integrated iron and steel facility based on environmental and health impacts in the Yangtze River Delta region, China. Ecotoxicology and Environmental Safety, 264. https://doi.org/10.1016/j.ecoenv.2023.115464

Suryati, I., Hasibuan, N. H., Silalahi, R. A., Malau, R., & Tambun, Y. (2024). Microplastic Distribution Model in Ambient Air PM2.5Around the Medan Industrial Area, North Sumatra. E3S Web of Conferences, 519. https://doi.org/10.1051/e3sconf/202451903014

UU No.32. (2009). Undang-Undang Republik Indonesia Nomor 32 Tahun 2009 Tentang Perlindungan dan Pengelolaan Lingkungan Hidup.

Yang, H., Tao, W., Liu, Y., Qiu, M., Liu, J., Jiang, K., Yi, K., Xiao, Y., & Tao, S. (2019). The contribution of the Beijing, Tianjin and Hebei region’s iron and steel industry to local air pollution in winter. Environmental Pollution, 245, 1095–1106. https://doi.org/https://doi.org/10.1016/j.envpol.2018.11.088

Yang, Y., Shen, J., Chen, H., Liang, Z., Liu, X., & Ji, H. (2023). Emission inventories, emission factors, and composition profiles of volatile organic compounds (VOCs) and heavy metals (HMs) from an e-waste dismantling park in southern China. Environmental Pollution, 331, 121890. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121890

Downloads

Published

2025-05-29

How to Cite

Manik, Y. B. S., Siswohartono, A. B., Aulia Rizqi Aufa Rafiqi, Brilian Maulani Putri, Mairuhu, D. R. C., Sede, J. S. U., & Nati, N. (2025). Spatial Analysis of Air Pollution Dispersion from a Stationary Source through Wind Profile: Case Study in North Sumatra. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 16(1), 70–77. https://doi.org/10.21771/jrtppi.2025.v16.no1.p70-77

Most read articles by the same author(s)