Efficient Cell-Wall Disruption of Microalgae Chlorella Vulgaris in water by catalytic ozonation over Microporous Carbon-Supported Titanium Oxide

Authors

  • Rame Rame Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Nilawati Nilawati Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Silvy Djayanti Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Novarina Irnaning Handayani Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Agus Purwanto Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Lisa Ruliaty BBPBAP, Jepara
  • Ganang Dwi Harjanto Neoalgae Indonesia Makmur

DOI:

https://doi.org/10.21771/jrtppi.2018.v9.no2.p30-36

Keywords:

cell-wall disruption, chlorella, catalytic ozonation

Abstract

This study investigated several parameters for cell-wall disruption from microalgae Chlorella vulgaris during catalytic ozonation over microporous carbon-supported titanium oxide, including flow ozone, catalytic time, and reactor capacity. At the same time, the cell-wall disruption yield and an active compound yield such as chlorophyll and carotenoid were evaluated for each pretreatment. The required delivered flow ozone to achieve 76,47% cell-wall disruption of Chlorella vulgaris was 1 minute at 4 LPM, which produced chlorophyll 56,75% and carotenoid 89,09%. Carbon-supported titanium oxide reduces the required O3 dose and catalytic time for cell-wall disruption; however, it limited chlorophyll yield did not exceed 75,67%. Pretreatment with 1 minute at 1 LPM in 2 liters produced carotenoid yield by approximately 98,18%, though it reduced chlorophyll to 59,45%. 

References

Barsanti, L., & Gualtieri, P. (2018). Is exploitation of microalgae economically and energetically sustainable ? Algal Research, 31(October 2017), 107–115. https://doi.org/10.1016/j.algal.2018.02.001

Cheng, J., Sun, J., Huang, Y., Feng, J., Zhou, J., & Cen, K. (2013). Dynamic microstructures and fractal characterization of cell wall disruption for microwave irradiation-assisted lipid extraction from wet microalgae. Bioresource Technology, 150, 67–72. https://doi.org/10.1016/j.biortech.2013.09.126

Ciudad, G., Rubilar, O., Azócar, L., Toro, C., Cea, M., Torres, Á., Navia, R. (2013). Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption. Journal of Bioscience and Bioengineering, xx(xx), 2–7. https://doi.org/10.1016/j.jbiosc.2013.06.012

Cuellar-bermudez, S. P., Aguilar-hernandez, I., Cardenas-chavez, D. L., Ornelas-soto, N., Romero-ogawa, M. A., & Parra-Saldivar, R. (2014). Extraction and purification of high-value metabolites from microalgae : essential lipids, astaxanthin, and phycobiliproteins. Microbial Biotechnology Published, 8, 190–209. https://doi.org/10.1111/1751-7915.12167

Daly, K. E., Huang, K. C., Wingreen, N. S., & Mukhopadhyay, R. (2011). Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria. Physical Review, 41922, 1–4. https://doi.org/10.1103/PhysRevE.83.041922

Dong, J., Gao, K., Wang, K., Xu, X., & Zhang, H. (2015). Cell Wall Disruption of Rape Bee Pollen Treated with Combination of Protamex Hydrolysis and Ultrasonication. Food Research International. https://doi.org/10.1016/j.foodres.2015.05.039

Gottschalk, C., Libra, J. A., & Saupe, A. (2000). Ozonation of Water and Waste Water. Wiley.

Gracia, R., Sarasa, J., Ormad, P., & Ovelleiro, J. L. (2000). Catalytic Ozonation with Supported Titanium Dioxide. The Stability of Catalyst in Water. Ozone: Science & Engineering, 22, 185–193. https://doi.org/10.1080/01919510008547219

Guo, Y., Yang, L., Cheng, X., & Wang, X. (2012). The Application and Reaction Mechanism of Catalytic Ozonation in Water Treatment. J Environ Anal Toxicol, 2(7). https://doi.org/10.4172/2161-0525.1000150

Kim, D.-Y., Vijayan, D., Praveenkumar, R., Han, J.-I., Lee, K., Park, J.-Y., … Oh, Y.-K. (2015). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresource Technology. https://doi.org/10.1016/j.biortech.2015.08.107

Li, B., Xu, X., Zhu, L., Ding, W., & Mahmood, Q. (2010). Catalytic ozonation of industrial wastewater containing chloro and nitroaromatics using modified diatomaceous porous filling. Desalination, 254(1–3), 90–98. https://doi.org/10.1016/j.desal.2009.12.009

Mastan, E., Wu, J., & Doan, H. (2012). An Investigation Into Surface Modification of Polyethylene Films for Hydrophilicity Enhancement by Catalytic Ozonation. Journal of Applied Polymer Science, 1–8. https://doi.org/10.1002/app.38224

O’Donnell, C., Tiwari, B. K., Cullen, P. J., & Rice, R. G. (2012). Ozone in Food Processing. John Wiley & Sons.

Posten, C., & Chen, S. F. (2016). Microalgae Biotechnology. Springer.

Rame, R., Pranoto, H., K Winahyu, R. K., Sofie, M., Utomo, A. S., & Raharjo, B. H. (2017). High-Performance Approaches on Wastewater Treatment Technologies in Hospital and Community Health Centre in Indonesia. In Proceedings The 7th International Symposium For Sustainable Humanosphere [ISSH]- A Forum of the Humanosphere Science School [HSS] 2017 (pp. 185–191). Research Center for Biomaterials - LIPI.

Rame, Purwanto, A., & Budiarto, A. (2017). Treatment of Textile Wastewater Based Catalytic Ozonation With Iron (III) Oxide (Fe2O3) and Aluminum Oxide (Al2O3) Catalysts Using Micro Diffuser. Research Journal of Industrial Pollution Prevention Technology, 8(2), 67–75. https://doi.org/http://dx.doi.org/10.21771/jrtppi.2017.v8.no2.p67-75

Rame, Tridecima, A., Pranoto, H., Moesliem, & Miftahuddin. (2018). FLASH Technology : Full-Scale Hospital Waste Water Treatments Adopted in Aceh. E3S Web Conf., 31. https://doi.org/https://doi.org/10.1051/e3sconf/20183104005

Siew, C., Lim, Y., Hong, C., Rosli, R., & Pei, P. (2008). An alternative Candida spp. cell wall disruption method using a basic sorbitol lysis buffer and glass beads. Journal of Microbiological Methods, 75(3), 576–578. https://doi.org/10.1016/j.mimet.2008.07.026

Taskova, R. M., Zorn, H., Krings, U., Bouws, H., & Berger, R. G. (2006). A Comparison of Cell Wall Disruption Techniques for the Isolation of Intracellular Metabolites from Pleurotus and Lepista sp ., 347–350.

Tsaloglou, M.-N. (2016). Microalgae Current Research and Applications. Caister Academic Press.

Wang, Q., Wei, W., Kingori, G. P., & Sun, J. (2015). Cell wall disruption in low-temperature NaOH / urea solution and its potential application in lignocellulose pretreatment. Cellulose, 22(6), 3559–3568. https://doi.org/10.1007/s10570-015-0767-z

Wu, J., Ma, L., Chen, Y., Cheng, Y., Liu, Y., & Zha, X. (2016). Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst : Removal and pathways. Water Research, 92, 140–148. https://doi.org/10.1016/j.watres.2016.01.053

Zaikov, G. E., & Rakovsky, S. K. (2009). Ozonation of Organic & Polymer Compounds. iSmithers.

Downloads

Published

2020-05-13

How to Cite

Rame, R., Nilawati, N., Djayanti, S., Handayani, N. I., Purwanto, A., Ruliaty, L., & Harjanto, G. D. (2020). Efficient Cell-Wall Disruption of Microalgae Chlorella Vulgaris in water by catalytic ozonation over Microporous Carbon-Supported Titanium Oxide. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 9(2), 30–36. https://doi.org/10.21771/jrtppi.2018.v9.no2.p30-36

Issue

Section

Articles