Implementation of Integrating PV System Production Forecasting Using Recurrent Neural Networks in Local Weather Station Prototype
DOI:
https://doi.org/10.21771/jrtppi.2025.v16.no1.p16-22Keywords:
Weather Station , LoRa, MQTT, PV System, RNNAbstract
This study explores the crucial role of weather stations in measuring, collecting, and reporting weather data, as well as the implementation of modern technologies such as Long Range (LoRa) radio wave modulation technology for real-time data monitoring. Equipped with components like temperature, humidity, solar radiation, and wind sensors, the weather station ensures accurate and efficient data collection. Testing of LoRa technology at the PEM Akamigas Campus demonstrated an effective range of approximately ±85 meters, ensuring optimal connectivity between the Subroto Building and the Energy Laboratory Building. Data consistency from the Message Queue Telemetry (MQTT) protocol server and Haiwell Human-Machine Interface (HMI) confirms the reliability of weather monitoring. Additionally, this research focuses on weather and energy production predictions for the PV system at the Subroto Building, using an Recurrent Neural Network (RNN) deep learning model to enhance the accuracy of solar panel energy production forecasts. Data evaluation from April 1, 2024, to April 22, 2024, highlights the potential. Based on the real-time sensor data installed in the field on a combination of 3 series solar panels, resulted in production forecasting with Root Mean Square Error (RMSE) values of approximately 4.9965 for voltage, and 0.0081 for current. This indicates fairly satisfactory results. For power testing, the RMSE results are still unsatisfactory, highlighting an opportunity for future model improvements. The combination of LoRa technology and the RNN model is expected to provide valuable insights into reliable weather monitoring and energy production at the PEM Akamigas Campus, with improvements to the model parameters for power data, which is inherently derived from the multiplication of voltage and current parameters.References
Bošnjaković, M., Stojkov, M., Katinić, M., & Lacković, I. (2023). Effects of Extreme Weather Conditions on PV Systems. Sustainability (Switzerland), 15(22). https://doi.org/10.3390/su152216044
Burhani, M. U., Novianto, D., & Yuliantari, R. V. (2023). Analisis Komunikasi Nirkabel Menggunakan IoT Network Protocols pada Stasiun Cuaca Mini. Jurnal Teknik Elektro Uniba (JTE UNIBA), 7(2), 325–328. https://doi.org/10.36277/jteuniba.v7i2.202
Campos, F. D., Sousa, T. C., & Barbosa, R. S. (2024). Short-Term Forecast of Photovoltaic Solar Energy Production Using LSTM. Energies , 17(11), 1–19. https://doi.org/10.3390/en17112582
Habibie, R. F. (2019). Pembangunan Sistem Monitoring Pilot Paralayang Dan Stasiun Cuaca Berbasis Internet Of Things (Iot) Di Paralayang Gunung Panten Majalengka. Retrieved from https://elibrary.unikom.ac.id/id/eprint/938/
Hossain, M. S., & Mahmood, H. (2020). Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast. IEEE Access, 8, 172524–172533. https://doi.org/10.1109/ACCESS.2020.3024901
Kumari, P., & Toshniwal, D. (2021). Deep learning models for solar irradiance forecasting: A comprehensive review. Journal of Cleaner Production, 318(May), 128566. https://doi.org/10.1016/j.jclepro.2021.128566
Maka, A. O. M., & Alabid, J. M. (2022). Solar energy technology and its roles in sustainable development. Clean Energy, 6(3), 476–483. https://doi.org/10.1093/ce/zkac023
Murdyantoro, E., Setiawan, R., Rosyadi, I., Nugraha, A. W. W., Susilawati, H., & Ramadhani, Y. (2019). Prototype weather station uses LoRa wireless connectivity infrastructure. Journal of Physics: Conference Series, 1367(1). https://doi.org/10.1088/1742-6596/1367/1/012089
Nurdin, A., Munadi, M., & Sidiq, R. (2022). Penerapan Automatic Weather Station Dalam Pemetaan Kecepatan Angin dan Arah Angin Sebagai Dasar Perancangan Turbin Angin. Infotekmesin, 13(1), 28–38. https://doi.org/10.35970/infotekmesin.v13i1.871
Pourbafrani, M., Ghadamian, H., Moghadasi, M., & Mardani, M. (2023). Design, Fabrication, and Experimental Study of a Low-cost and Accurate Weather Station Using a Microcontroller System. Journal of Renewable Energy and Environment, 10(4), 35–43. https://doi.org/10.30501/JREE.2023.383796.1551
Prakasa, A., & Utami, F. D. (2019). Sistem Informasi Radar Cuaca Terintegrasi BMKG BMKG The Integrated Weather Radar Information System of BMKG. Journal of Telecommunication, Electronics, and Control Engineering (Jtece), 01, 86–96.
Rivera, A., Ponce, P., Mata, O., Molina, A., & Meier, A. (2023). Local Weather Station Design and Development for Cost-Effective Environmental Monitoring and Real-Time Data Sharing. Sensors, 23(22). https://doi.org/10.3390/s23229060
Sarmas, E., Spiliotis, E., Stamatopoulos, E., Marinakis, V., & Doukas, H. (2023). Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models. Renewable Energy, 216(November 2022), 118997. https://doi.org/10.1016/j.renene.2023.118997
Shaik, F., Lingala, S. S., & Veeraboina, P. (2023). Effect of various parameters on the performance of solar PV power plant: a review and the experimental study. Sustainable Energy Research, 10(1). https://doi.org/10.1186/s40807-023-00076-x
Sianturi, Y. (2021). Pengukuran dan Analisa Data Radiasi Matahari di Stasiun Klimatologi Muaro Jambi. Megasains, 12(1), 40–47. https://doi.org/10.46824/megasains.v12i1.45
Stellastral, C., Hanafi, & Syahroni, M. (2022). Rancang Bangun Sistem Monitoring Temperatur dan. Jurnal Tektro, 06(01), 45–50.
Sucipto, W., Djuni Hartawan, I. G. A. K. D., & Setiawan, W. (2018). RANCANG BANGUN PERANGKAT PEMANTAU CUACA OTOMATIS BERBASIS MIKROKONTROLER PADA JARINGAN WLAN IEEE 802.11b. Jurnal SPEKTRUM, 4(2), 48. https://doi.org/10.24843/spektrum.2017.v04.i02.p07
Tanjung, R., Listiani, A., & Lestari, F. (2024). Prediksi Multivariate Time Series Parameter Cuaca Menggunakan Long Short - Term Memory ( LSTM ), 2024(November 2022), 445–456.
Wang, Y., Addepalli, S., & Zhao, Y. (2020). Recurrent neural networks and its variants in remaining useful life prediction. IFAC-PapersOnLine, 53(3), 137–142. https://doi.org/10.1016/j.ifacol.2020.11.022
Zulafah, F. A., Dewatama, D., & Siswoko, S. (2022). Rancang Bangun Stasiun Cuaca Berbasis Wireless Sensor Network Dengan Lora Sx1278. TESLA: Jurnal Teknik Elektro, 24(2), 116–128. https://doi.org/10.24912/tesla.v24i2.18463
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Novan Akhiriyanto, Setiawan Listianto, Naufal Basmana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.