Nitrogen Removal in the Anammox Biofilm Reactor using Palm Fiber as Carrier in Tropical Temperature Operation

Authors

  • Zulkarnaini Zulkarnaini Departement of Environmental Engineering, Universitas Andalas
  • Ansiha Nur Departement of Environmental Engineering, Universitas Andalas
  • Wina Ermaliza Departement of Environmental Engineering, Universitas Andalas

DOI:

https://doi.org/10.21771/jrtppi.2019.v10.no2.p7-15

Keywords:

anammox, UASB, palm fiber, tropical temperature, nitrogen

Abstract

Anaerobic ammonium oxidation (anammox) is the process of converting ammonium directly into nitrogen gas with nitrite as an electron acceptor under anaerobic conditions. This process is more effective than conventional nitrification-denitrification but is very dependent on several parameters, one of which is temperature. The optimum temperature range for the growth of anammox bacteria is 30-400C. The purpose of this research was to determine the efficiency of nitrogen removal by anammox process using palm fibers in the Up-Flow Anaerobic Sludge Blanket (UASB) reactor in the tropical temperature. The experiment was conducted at a laboratory scale with a variation of Hydraulic Retention Time (HRT) 24 h and 12 h using artificial wastewater. The reactor was inoculated with anammox granule genus Candidatus Brocadia. The concentration of ammonium, nitrite, and nitrate in the influent and effluent were measured using a UV-Vis spectrophotometer based on standard method. Based on the experiment, the ratio ΔNH4+-N:ΔNO2--N and ΔNO3--N:ΔNH4+-N similar with stoichiometric of anammox. The maximum Nitrogen removal performance (NRT) achieved 0.11 kg-N/m3.d at Nitrogen Loading Rate (NLR) 0.14 kg-N/m3.d and 0.20 kg-N/m3.d at NLR 0.29 kg-N/m3.d. The removal efficiency for Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) in HRT 24 h were 79% and 76%, respectively while decreased in HRT 12 h were 72% and 69%, respectively. Anammox process can be applied in the tropical temperature at a laboratory scale using a UASB reactor with palm fiber as the carrier.

References

Ali, M., & Okabe, S. (2015). Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere, 141, 144–153. https://doi.org/10.1016/j.chemosphere.2015.06.094

American Public Health Association, American Water Works Association, W. E. F. (1999). Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. Public Health, (1).

Anthonisen, A., Loehr, R., Prakasam, T., & Srinath, E. (1976). Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 48(5), 835–852. https://doi.org/10.1017/CBO9781107415324.004

Chen, C., Huang, X., Lei, C., Zhu, W., Chen, Y., & Wu, W. (2012). Improving Anammox start-up with bamboo charcoal. Chemosphere, 89(10), 1224–1229. https://doi.org/10.1016/J.CHEMOSPHERE.2012.07.045

Chen, W., Dai, X., Cao, D., Hu, X., Liu, W., & Yang, D. (2017). Characterization of a microbial community in an Anammox process using stored Anammox sludge. Water (Switzerland), 9(11), 1–11. https://doi.org/10.3390/w9110829

Gerardi, M. H. (2002). Nitrification and Denitrification in the Activated Sludge Process. New York: John Wiley and Sons, Inc.

Graaf, A. A. Van De, Bruijn, P. De, Robertson, L. A., Jetten, M. M., & Kuenen, J. G. (1996). Autotrophic growth of anaerobic am mon i u m-oxi d izi ng m i cro-org a n isms in a fluidized bed reactor, (1 996).

Jin, R. C., Yang, G. F., Yu, J. J., & Zheng, P. (2012). The inhibition of the Anammox process: A review. Chemical Engineering Journal, 197(November 2017), 67–79. https://doi.org/10.1016/j.cej.2012.05.014

Kindaichi, T., Tsushima, I., Ogasawara, Y., Shimokawa, M., Ozaki, N., Satoh, H., & Okabe, S. (2007). In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Applied and Environmental Microbiology, 73(15), 4931–4939. https://doi.org/10.1128/AEM.00156-07

Ma, B., Peng, Y., Zhang, S., Wang, J., Gan, Y., Chang, J., … Zhu, G. (2013). Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresource Technology, 129, 606–611. https://doi.org/10.1016/j.biortech.2012.11.025

Mulder, A., Van De Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol., 16, 177–184.

Puyol, D., Carvajal-Arroyo, J. M., Garcia, B., Sierra-Alvarez, R., & Field, J. A. (2013). Kinetic characterization of Brocadia spp.-dominated anammox cultures. Bioresource Technology, 139, 94–100. https://doi.org/10.1016/j.biortech.2013.04.001

Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50(5), 589–596. https://doi.org/10.1007/s002530051340

Strous, M., Heijnen, J. J., Kuenen, J. G., Jetten, M. S. M., Strous, M., Heijnen, J. J., & Kuenen, J. G. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50(5), 589–596. https://doi.org/10.1007/s002530051340

Strous, Marc, Kuenen, J. G., & Jetten, M. S. M. (1999a). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248–3250. https://doi.org/papers2://publication/uuid/E9A1573A-6D62-420E-94D0-CA7C84D0FEB9

Strous, Marc, Kuenen, J. G., & Jetten, M. S. M. (1999b). Key Physiology of Anaerobic Ammonium Oxidation Key Physiology of Anaerobic Ammonium Oxidation. Applied and Environmental Microbiology, 65(7), 0–3. https://doi.org/papers2://publication/uuid/E9A1573A-6D62-420E-94D0-CA7C84D0FEB9

Szatkowska, A. B., & Paulsrud, B. (2014). The anammox process for nitrogen removal from wastewater - achiewements and future challenges. Innsendte Artikler, 2, 186–194.

van Loosdrecht, M. C. M. (2008). Innovative nitrogen removal. Biological Wastewater Treatment-Principles, Modelling and Design., 139–154.

Waki, M., Tokutomi, T., Yokoyama, H., & Tanaka, Y. (2007). Nitrogen removal from animal waste treatment water by anammox enrichment. Bioresource Technology, 98(14), 2775–2780. https://doi.org/10.1016/j.biortech.2006.09.031

Widyawati, N. (2011). Sukses Investasi Massa Depan Dengan Bertanam Pohon Aren. Yogyakarta: LILY PUBLISHER.

Zulkarnaini, Yujie, Q., Yamamoto-ikemoto, R., & Matsuura, N. (2018). One-stage nitritation/anammox process using a biofilm reactor with two-inflow. Journal of Water and Environment Technology, 16(2), 106–114. https://doi.org/10.2965/jwet.17-050

Downloads

Published

2019-12-16

How to Cite

Zulkarnaini, Z., Nur, A., & Ermaliza, W. (2019). Nitrogen Removal in the Anammox Biofilm Reactor using Palm Fiber as Carrier in Tropical Temperature Operation. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 10(2), 7–15. https://doi.org/10.21771/jrtppi.2019.v10.no2.p7-15

Issue

Section

Articles