Synthesizing and Performance Testing of Zn Promoted Ni Catalyst With γ-Al2O3 Support in The Process of Hydrotreating Used Cooking Oil into Green Diesel


  • Faizal Zul Kopli Departement of Chemical Engineering, Sriwijaya State Polytechnic, Indonesia
  • Fadel Kurnia Artha Departement of Chemical Engineering, Sriwijaya State Polytechnic, Indonesia
  • Ismeini Ismeini Departement of Chemical Engineering, Sriwijaya State Polytechnic, Indonesia
  • Erlinawati Erlinawati Departement of Chemical Engineering, Sriwijaya State Polytechnic, Indonesia
  • Adityas Agung Ramandani Departement of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan
  • Dimas Amirul Mukminin Nur Efendi Departement of Chemical Engineering, Lampung State Polytechnic, Indonesia


Green Diesel, Catalyst, SEM Characterization, Hydrotreating, Waste Cooking Oil


Green diesel was a mixture of straight-chain and branched-chain alkanes, typically mostly 15 to 18 carbon atoms per molecule (C15 to C18) extracted from the hydrotreating process of vegetable oils. In this study, a catalyst of Nickel (Ni) promoted Zinc (Zn) supported by Alumina (Al2O3) was used. The catalyst was made by varying the use of and without the Zn promoter in the catalyst. Catalyst tested for Scanning Electron Microscope characterization. For the 60Ni/Al2O3 catalyst, the total area was 51,575.51 m2/gr, while for the 15Ni-45Zn/Al2O3 catalyst, the total area was 20.577,55 m2/gr. Furthermore, a performance test of the catalyst was also carried out using a green diesel reactor with a temperature of 400°C and a pressure of 20 bar, the percentage yield on the 60Ni/Al2O3 catalyst was 25.73% while the 30Ni-30Zn/Al2O3 catalyst was 23.60%. The 60Ni/Al2O3 catalyst has the following properties: physical properties such as density, viscosity, flash point, cetane number, and acid number of 765.17 ± 0.249 kg/m3, 3.55 ± 0.076 mm2/s, 60.73 ± 0.170°C, 88.10 ± 0.648 CN, and 0.33 ± 0.76 mgKOH/g, respectively. The 15Ni-45Zn/Al2O3 catalyst has the following properties: physical properties such as density of 766.77 ± 0.679 kg/m3, viscosity of 66.13 ± 0.249 mm2/s, flash point of 2.92 ± 0.011°C, cetane number of 82.33 ± 0.386, and acid number of 82.33 ± 0.386 mgKOH/g.


Apriantoro, M. S., Hasanridhlo, Y., Laksmi, W. I., Agustin, L., & Husain, M. Z. (2023). A Barter System for Used Palm Oil Traders: Islamic Law Perspective. Demak Universal Journal of Islam and Sharia, 1(01), 57-66.

Asikin-Mijan, N., Lee, H., Abdulkareem-Alsultan, G., Afandi, A., & Taufiq-Yap, Y. (2017). Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil. Journal of Cleaner Production, 167, 1048-1059.

Dewi, D. A. N. N., & Iskandar, D. D. (2023). REGIONAL ECOSYSTEM OF USED COOKING OIL (UCO) MANAGEMENT IN CENTRAL JAVA PROVINCE. Jurnal REP (Riset Ekonomi Pembangunan), 8(2), 156-167.

Doğan, B., & Erol, D. (2023). The investigation of energy and exergy analyses in compression ignition engines using diesel/biodiesel fuel blends-a review. Journal of Thermal Analysis and Calorimetry, 148(5), 1765-1782.

Febijanto, I., Ulfah, F., & Trihadi, S. E. Y. (2023). A Review on used cooking oil as a sustainable biodiesel feedstock in Indonesia. IOP Conference Series: Earth and Environmental Science,

Gousi, M., Andriopoulou, C., Bourikas, K., Ladas, S., Sotiriou, M., Kordulis, C., & Lycourghiotis, A. (2017). Green diesel production over nickel-alumina co-precipitated catalysts. Applied Catalysis A: General, 536, 45-56.

Gousi, M., Kordouli, E., Bourikas, K., Simianakis, E., Ladas, S., Panagiotou, G. D., Kordulis, C., & Lycourghiotis, A. (2020). Green diesel production over nickel-alumina nanostructured catalysts promoted by zinc. Catalysis Today, 355, 903-909.

Hamid, M. F., Idroas, M. Y., Sa’ad, S., Yew Heng, T., Che Mat, S., Zainal Alauddin, Z. A., Shamsuddin, K. A., Shuib, R. K., & Abdullah, M. K. (2020). Numerical investigation of fluid flow and in-cylinder air flow characteristics for higher viscosity fuel applications. Processes, 8(4), 439.

Heris, S. Z., Bagheri, H., Mousavi, S. B., & Hosseini Nami, S. (2024). Optimizing nanofluid additives for enhanced thermophysical properties in anionic crude oil for EOR applications. The Canadian Journal of Chemical Engineering.

Hooshmand, S. E., Kumar, S., Bahadur, I., Singh, T., & Varma, R. S. (2023). Deep eutectic solvents as reusable catalysts and promoter for the greener syntheses of small molecules: Recent advances. Journal of Molecular Liquids, 371, 121013.

Hwang, J., Bae, C., Patel, C., Agarwal, R. A., Gupta, T., & Agarwal, A. K. (2017). Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application. Applied Energy, 206, 1203-1213.

Malabadi, R. B., Sadiya, M., Kolkar, K. P., & Chalannavar, R. K. (2023). Biodiesel production: An updated review of evidence. International Journal of Biological and Pharmaceutical Sciences Archive, 6(02), 110-133.

Mannu, A., Vlahopoulou, G., Urgeghe, P., Ferro, M., Del Caro, A., Taras, A., Garroni, S., Rourke, J. P., Cabizza, R., & Petretto, G. L. (2019). Variation of the chemical composition of waste cooking oils upon bentonite filtration. Resources, 8(2), 108.

Mofijur, M., Ahmed, S. F., Rony, Z. I., Khoo, K. S., Chowdhury, A. A., Kalam, M., Badruddin, I. A., & Khan, T. Y. (2023). Screening of non-edible (second-generation) feedstocks for the production of sustainable aviation fuel. Fuel, 331, 125879.

Nugraha, R. a., Zikri, A., & Suci Ningsih, A. (2021). KONVERSI MINYAK JELANTAH MENJADI GREEN DIESEL DENGAN PROSES HYDROTREATING MENGGUNAKAN KATALIS NiMo/ ?-Al2O3. Jurnal Pendidikan dan Teknologi Indonesia, 1(12), 475-480.

Othman, M. F., Adam, A., Najafi, G., & Mamat, R. (2017). Green fuel as alternative fuel for diesel engine: A review. Renewable and Sustainable Energy Reviews, 80, 694-709.

Outlook. (2019). Indonesia Energy. Sekretariat Jendral Dewan Energi Nasional.

Rahim, D. A., Fang, W., Wibowo, H., Hantoko, D., Susanto, H., Yoshikawa, K., Zhong, Y., & Yan, M. (2023). Review of high temperature H2S removal from syngas: Perspectives on downstream process integration. Chemical Engineering and Processing-Process Intensification, 183, 109258.

Ramandani, A. A., Shintawati, S., Aji, S. P., & Sunarsi, S. (2022). Pemanfaatan Lignin Serai Wangi Sebagai Lignin Resorsinol Formaldehida (LRF) Menggunakan Ultrasonic Microwave-Assisted Extraction (UMAE). CHEESA: Chemical Engineering Research Articles, 5(1), 40-40.

Rasyid, R. (2022). Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil. Jurnal Kimia VALENSI, 8(2), 190-198.

Sulaimon, A. A., & Adeyemi, B. J. (2018). Effects of interfacial tension alteration on the destabilization of water-oil emulsions. Science and Technology Behind Nanoemulsions, 83.

Undavalli, V., Olatunde, O. B. G., Boylu, R., Wei, C., Haeker, J., Hamilton, J., & Khandelwal, B. (2023). Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 136, 100876.

van Dyk, S., Su, J., Mcmillan, J. D., & Saddler, J. (2019). Potential synergies of drop‐in biofuel production with further co‐processing at oil refineries. Biofuels, Bioproducts and Biorefining, 13(3), 760-775.

Wu, D., Lv, P., Wu, J., He, B., Li, X., Chu, K., Jia, Y., & Ma, D. (2023). Catalytic active centers beyond transition metals: Atomically dispersed alkaline-earth metals for the electroreduction of nitrate to ammonia. Journal of Materials Chemistry A, 11(4), 1817-1828.

Zhang, J., Mück-Lichtenfeld, C., & Studer, A. (2023). Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature, 619(7970), 506-513.

Zhang, Z., Wang, Q., & Zhang, X. (2019). Hydroconversion of waste cooking oil into bio-jet fuel over NiMo/SBUY-MCM-41. Catalysts, 9(5), 466.



How to Cite

Kopli, F. Z., Fadel Kurnia Artha, Ismeini, I., Erlinawati, E., Ramandani, A. A., & Efendi, D. A. M. N. (2024). Synthesizing and Performance Testing of Zn Promoted Ni Catalyst With γ-Al2O3 Support in The Process of Hydrotreating Used Cooking Oil into Green Diesel. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 15(1). Retrieved from