Optimization of Injection Pressure and Fuel Temperature in a Diesel Engine Using Biodiesel B40

Authors

  • Romy Romy Departement of Mechanical Engineering, Universitas Riau, Pekanbaru, Indonesia
  • Suwitno Suwitno Departement of Mechanical Engineering, Universitas Riau, Pekanbaru, Indonesia
  • Yogie Rinaldi Ginting Departement of Mechanical Engineering, Universitas Riau, Pekanbaru, Indonesia
  • Ferdinandus Extranta Sembiring Departement of Mechanical Engineering, Universitas Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.21771/jrtppi.2024.v15.no1.p1-9

Keywords:

Biodiesel, Engine Performance, Fuel Temperature, Injection Pressure, Taguchi Method

Abstract

Biodiesel is an alternative fuel substitute for diesel engines produced from vegetable or animal oil through the transesterification reaction process between fatty acid, methanol, and catalyst. However, in its use in diesel engines, there is a decrease in engine performance. This is partly due to the higher viscosity value compared to diesel. Some ways to improve engine performance using biodiesel include adjusting injection pressure and increasing fuel inlet temperature. This study aimed to determine the effect of adding injection pressure and fuel inlet temperature on the performance of diesel engines using B40, such as power, thermal efficiency, sfc, and AFR. This study used a 1-cylinder diesel engine with constant rotation, using five variations of injection pressure 110-150 bar with a 10 bar interval, and five variations of fuel inlet temperature 30˚C-70˚C with a 10˚C intervals, and five loads from 5,000 kg/m2 to 25,000 kg/m2 with a 5000 kg/m2 interval. Testing and data processing were done using the Taguchi method. The results showed that the best diesel engine performance occurred at an injection pressure of 150 bar and a fuel temperature of 60˚C. The predicted performance value achieved under optimal conditions is a power of 2.9 kW at a load of 25000 kg/m2, thermal efficiency of 69.92% at a load of 25000 kg/m2, sfc of 3 x10-5 kg/kJ at a load of 25000 kg/m2, and AFR of 169.23 at a load of 5000 kg/m2. Temperature significantly affects engine performance power, sfc, thermal efficiency, and AFR compared to injection pressure.

References

Ahmad, T., Danish, M., Kale, P., Geremew, B., Adeloju, S. B., Nizami, M., & Ayoub, M. (2019). Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, 139, 1272–1280. https://doi.org/10.1016/j.renene.2019.03.036 DOI: https://doi.org/10.1016/j.renene.2019.03.036

Alifuddin, T., Hakim, L., Ilminnafik, N., & ... (2020). Karakteristik Penyemprotan Campuran Diesel-Biodiesel Minyak Nyamplung dan Etanol Dengan Variasi Tekanan Injeksi. In … Workshop and National … (pp. 26–27). Retrieved from https://jurnal.polban.ac.id/proceeding/article/view/2034

Anis, S., Budiandono, G. N., Saputro, D. D., & Zainal, Z. A. (2018). Jurnal Bahan Alam Terbarukan Effect of Biodiesel / Diesel Blend and Temperature on 1-Cylinder Diesel Fuel Injection Pump Performance and Spray Pattern. https://doi.org/10.15294/jbat.v7i2.11891 DOI: https://doi.org/10.15294/jbat.v7i2.11891

Arumugam, A., & Ponnusami, V. (2019, February 1). Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renewable Energy. Elsevier Ltd. https://doi.org/10.1016/j.renene.2018.07.059 DOI: https://doi.org/10.1016/j.renene.2018.07.059

Asokan, M. A., Senthur Prabu, S., Bade, P. K. K., Nekkanti, V. M., & Gutta, S. S. G. (2019). Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy, 173, 883–892. https://doi.org/10.1016/j.energy.2019.02.075 DOI: https://doi.org/10.1016/j.energy.2019.02.075

Bondioli, P., Bella, L. Della, Rivolta, G., Faragò, S., Boschi, A., & Beretta, S. (2015). Study of biodiesel solid contaminants by means of Scan Electron Microscosopy (SEM). Rivista Italiana Delle Sostanze Grasse, 92(1), 11–16.

Buyukkaya, E. (2010). Effects of biodiesel on a di diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099–3105. https://doi.org/10.1016/j.fuel.2010.05.034 DOI: https://doi.org/10.1016/j.fuel.2010.05.034

Czechlowski, M., Gracz, W., Marcinkowski, D., & Golimowski, W. (2020). The impact of the temperature of biodiesel from animal fats on nitrogen oxides emissions, 01001, 1–5. DOI: https://doi.org/10.1051/e3sconf/202017101001

Dabi, M., & Saha, U. K. (2019, December 1). Application potential of vegetable oils as alternative to diesel fuels in compression ignition engines: A review. Journal of the Energy Institute. Elsevier B.V. https://doi.org/10.1016/j.joei.2019.01.003 DOI: https://doi.org/10.1016/j.joei.2019.01.003

Ge, J. C., Kim, H. Y., Yoon, S. K., & Choi, N. J. (2020). Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel, 260. https://doi.org/10.1016/j.fuel.2019.116326 DOI: https://doi.org/10.1016/j.fuel.2019.116326

Geng, L. (2020). Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics, (July 2019), 312–326. https://doi.org/10.1002/ese3.429 DOI: https://doi.org/10.1002/ese3.429

Keera, S. T., El Sabagh, S. M., & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979–984. https://doi.org/10.1016/j.ejpe.2018.02.007 DOI: https://doi.org/10.1016/j.ejpe.2018.02.007

Komariah, L. N., Hadiah, F., Aprianjaya, F., & Nevriadi, F. (2018). Biodiesel effects on fuel filter; Assessment of clogging characteristics. Journal of Physics: Conference Series, 1095(1), 0–10. https://doi.org/10.1088/1742-6596/1095/1/012017 DOI: https://doi.org/10.1088/1742-6596/1095/1/012017

Kumar, S., Dinesha, P., & Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 185, 1163–1173. https://doi.org/10.1016/j.energy.2019.07.124 DOI: https://doi.org/10.1016/j.energy.2019.07.124

Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2020). The use of KOH/Clinoptilolite catalyst in pilot of microreactor for biodiesel production from waste cooking oil. Fuel, 263. https://doi.org/10.1016/j.fuel.2019.116659 DOI: https://doi.org/10.1016/j.fuel.2019.116659

Mohod, R, T., Bhansali, S, S., Moghe, S. M., & Kathoke, T. B. (2014). Preheating of Biodiesel for the Improvement of the Performance Characteristics of Di Engine : A Review. International Journal of Engineering Research and General Science, 2(4), 747–753. https://doi.org/10.12691/ajme-6-2-4

Plotnikov, S. A., Kartashevich, A. N., & Buzikov, S. V. (2018). Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine. In Journal of Physics: Conference Series (Vol. 944). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/944/1/012089 DOI: https://doi.org/10.1088/1742-6596/944/1/012089

Pugazhendhi, A., Alagumalai, A., Mathimani, T., & Atabani, A. E. (2020). Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: An Indian perspective. Fuel, 273. https://doi.org/10.1016/j.fuel.2020.117725 DOI: https://doi.org/10.1016/j.fuel.2020.117725

Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A., & Negm, N. A. (2019). Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279, 224–231. https://doi.org/10.1016/j.molliq.2019.01.096 DOI: https://doi.org/10.1016/j.molliq.2019.01.096

Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J., & Bordado, J. C. (2019, November 20). Biodiesel production processes and sustainable raw materials. Energies. MDPI AG. https://doi.org/10.3390/en12234408 DOI: https://doi.org/10.3390/en12234408

Shrivastava, P., & Verma, T. N. (2020). Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil. Fuel, 265. https://doi.org/10.1016/j.fuel.2019.117005 DOI: https://doi.org/10.1016/j.fuel.2019.117005

Sinaga, W. V., Romy, & Helwani, Z. (2021). Kaji Eksperimental Penggunaan Biosolar B40 Terhadap Unjuk Kerja Mesin Dengan Menggunakan Variasi Tekanan Pengabutan Pada Nosel. Jom FTEKNIK, 8(1), 1–6. Retrieved from https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/29352

Suardi, S., Setiawan, W., Nugraha, A. M., Alamsyah, A., & Ikhwani, R. J. (2023). Evaluation of Diesel Engine Performance Using Biodiesel from Cooking Oil Waste (WCO). Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 14(1), 29–39. https://doi.org/10.21771/jrtppi.2023.v14.no1.p29-39 DOI: https://doi.org/10.21771/jrtppi.2023.v14.no1.p29-39

Wang, S., Karthickeyan, V., Sivakumar, E., & Lakshmikandan, M. (2020). Experimental investigation on pumpkin seed oil methyl ester blend in diesel engine with various injection pressure, injection timing and compression ratio. Fuel, 264. https://doi.org/10.1016/j.fuel.2019.116868 DOI: https://doi.org/10.1016/j.fuel.2019.116868

Yesilyurt, M. K. (2019). The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends. Renewable Energy, 132, 649–666. https://doi.org/10.1016/j.renene.2018.08.024 DOI: https://doi.org/10.1016/j.renene.2018.08.024

Downloads

Published

2024-05-29

How to Cite

Romy, R., Suwitno, S., Ginting, Y. R., & Sembiring, F. E. (2024). Optimization of Injection Pressure and Fuel Temperature in a Diesel Engine Using Biodiesel B40. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 15(1), 1–9. https://doi.org/10.21771/jrtppi.2024.v15.no1.p1-9

Issue

Section

Articles