Isotherm Study, Adsorption Kinetics and Thermodynamics of Lead Using Combination Adsorbent of Chitosan and Coffee Ground Activated Carbon

Authors

  • Nisa Nurhidayanti Nisa Universitas Pelita Bangsa
  • Aris Dwi Cahyanto Universitas Pelita Bangsa

DOI:

https://doi.org/10.21771/jrtppi.2023.v14.no3.p1-11

Keywords:

isotherm; kinetics; thermodynamics; lead; chitosan; coffee ground

Abstract

The presence of lead metal in water naturally due to its mobility can cause the nature of water to become toxic and endanger the environmental ecosystem because it bioaccumulates in the food chain. The purpose of this study was to study the maximum adsorption capacity through an isotherm model, to determine the rate of adsorption kinetics in the use of chitosan and coffee grounds adsorbents in reducing lead concentrations in industrial wastewater and to study its thermodynamic magnitude. The research method was carried out using experiments in the laboratory followed by quantitative data analysis to determine the isotherm model and adsorption kinetics. The results showed that the adsorption isotherm follows the Langmuir isotherm model with a correlation coefficient of 0.9970 with a maximum adsorption capacity of 1.0511 mg.g-1 which indicates that chemical adsorption occurs in the mono layer with a homogeneous distribution of adsorption sites with adsorption energy. constant and negligible interactions between lead metal molecules (adsorbate). Study of lead adsorption kinetics using chitosan-activated carbon coffee grounds following the Weber-Morris/intra-particle diffusion model with a correlation coefficient of 0.9920 with a diffusion rate of 76.512 g.mg-1.hour-1 indicating that intra-particle diffusion is the rate step limiting in the overall biosorption process. Negative ΔGo values ​​indicate that the adsorption reaction takes place spontaneously, ΔHo of 0.8130 indicates an endothermic reaction, and ΔSo of 4.1888 indicates an increase in the randomness of the adsorption process at the adsorbent interface and lead during adsorption.

References

Das, S., Chakraborty, J., Chatterjee, S., & Kumar, H. (2018). Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environmental Science: Nano, 5(12), 2784–2808. https://doi.org/10.1039/C8EN00799C

Hevira, L., & Gampito. (2022). The Kinetic Analysis and Adsorption Isotherm of Chicken Egg Shells and Membranes Against Synthetic Dyes. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 13(2), 28–36. https://doi.org/10.21771/jrtppi.2022.v13.no2.p28-36

Khalil, U., Bilal Shakoor, M., Ali, S., Rizwan, M., Nasser Alyemeni, M., & Wijaya, L. (2020). Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. Journal of Saudi Chemical Society, 24(11), 799–810. https://doi.org/10.1016/j.jscs.2020.07.001

Kim, H., Hwang, Y. S., & Sharma, V. K. (2014). Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chemical Engineering Journal. Retrieved from https://www.sciencedirect.com/science/article/pii/S1385894714007669

Kim, M. S., Min, H. G., Koo, N., Park, J., Lee, S. H., Bak, G. I., & Kim, J. G. (2014). The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments. Journal of Environmental Management, 146, 124–130. https://doi.org/10.1016/j.jenvman.2014.07.001

Lessa, E. F., Nunes, M. L., & Fajardo, A. R. (2018). Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydrate Polymers, 189(February), 257–266. https://doi.org/10.1016/j.carbpol.2018.02.018

Naga Babu, A., Reddy, D. S., Kumar, G. S., Ravindhranath, K., & Krishna Mohan, G. V. (2018). Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. Journal of Environmental Management, 218, 602–612. https://doi.org/10.1016/j.jenvman.2018.04.091

Nurhidayanti, N., Ilyas, N. I., & Suwazan, D. (2021). Efektivitas Kombinasi Kitosan dan Ampas Kopi sebagai Adsorben Alami dalam Menurunkan Konsentrasi Arsen Pada Limbah Cair PT PXI. Jurnal Tekno Insentif, 15(2), 76–87. https://doi.org/10.36787/jti.v15i2.584

Nurhidayanti, N., & Nugraha, S. (2022). Kajian Isoterm dan Kinetika Adsorpsi Logam Arsen menggunakan Biosorben Kombinasi Kitosan dan Karbon Aktif Ampas Kopi. Prosiding SAINTEK: Sains Dan Teknologi, 1(1), 445–451.

Nuryono, N., Miswanda, D., Sakti, S. C. W., Rusdiarso, B., Krisbiantoro, P. A., Utami, N.,& Kamiya, Y. (2020). Chitosan-functionalized natural magnetic particle@silica modified with (3-chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion. Materials Chemistry and Physics, 255(February), 123507. https://doi.org/10.1016/j.matchemphys.2020.123507

Pagalan, E., Sebron, M., Gomez, S., Salva, S. J., Ampusta, R., Macarayo, A. J.,& Arazo, R. (2020). Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Industrial Crops and Products, 145(June), 111953. https://doi.org/10.1016/j.indcrop.2019.111953

Park, C. M., Kim, Y. M., Kim, K.-H., Wang, D., Su, C., & Yoon, Y. (2019). Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: A mini review. Chemosphere, 221, 392–402. https://doi.org/10.1016/j.chemosphere.2019.01.063

Purnama, F. (2019). Pembuatan dan Karakterisasi Kitosan-Karbon Aktif dari Ampas Kopi Sebagai Adsorben Untuk Menurunkan Kadar Logam Kadmium dan Nikel. Tesis. Universitas Sumatera Utara.

Said, N. I. (2018). Metoda Penghilangan Logam Berat (As, Cd, Cr, Ag, Cu, Pb, Ni Dan Zn) Di Dalam Air Limbah Industri. Jurnal Air Indonesia, 6(2), 136–148. https://doi.org/10.29122/jai.v6i2.2464

Sunsandee, N., Ramakul, P., Phatanasri, S., & Pancharoen, U. (2020). Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf : Kinetic and equilibrium studies. Biotechnology Reports, 27, e00488. https://doi.org/10.1016/j.btre.2020.e00488

Suwazan, D., & Nurhidayanti, N. (2022). Efektivitas Kombinasi Kitosan dan Ampas Teh Sebagai Adsorben Alami dalam Menurunkan Konsentrasi Timbal Pada Limbah Cair PT PXI. Jurnal Ilmu Lingkungan, 20(1), 37–44. https://doi.org/10.14710/jil.20.1.37-44

Suwazan, D., Nurhidayanti, N., Fahmi, A. B., & Riyadi, A. (2022). Pemanfaatan Kitosan Dan Karbon Aktif Dari Ampas Teh Dalam Menurunkan Logam Kadmium Dan Arsen Pada Limbah Industri Pt X, 10(2), 91–102.

Wang, J., & Guo, X. (2020a). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279

Wang, J., & Guo, X. (2020b). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390(January), 122156. https://doi.org/10.1016/j.jhazmat.2020.122156

Downloads

Published

2023-12-22

How to Cite

Nisa, N. N., & Cahyanto, A. D. (2023). Isotherm Study, Adsorption Kinetics and Thermodynamics of Lead Using Combination Adsorbent of Chitosan and Coffee Ground Activated Carbon. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 14(3), 1–11. https://doi.org/10.21771/jrtppi.2023.v14.no3.p1-11

Issue

Section

Articles