Easy Preparation of Zinc Molybdate Photocatalyst and Its Application for Degradation of Methylene Blue
DOI:
https://doi.org/10.21771/jrtppi.2023.v14.no2.p45-53Keywords:
Photocatalyst, methylene blue, Zinc molybdate, Organic PollutantAbstract
Photocatalyst is one way that can be done to overcome the problem of dye waste in water. Hazardous chemicals are regularly used in the manufacture of photocatalysts. In this research, ZnMoO4 was prepared by an environmentally friendly and cost-effective synthesis. The functional groups, crystalline structure and morphology of ZnMoO4 were characterised using fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The band gap energy has been studied through UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic activity of ZnMoO4 was tested against the organic pollutant methylene blue under visible light irradiation and its degradation products were analyzed with a UV-Vis spectrophotometer at a wavelength of 664 nm. The photocatalytic process of ZnMoO4 has been able to degrade 99% of methylene blue after 80 minutes of irradiation. The excellent photodegradation performance indicates that the transition activity of electron currents from the valence band to the conduction band on ZnMoO4 is going well.References
Ait Ahsaine, H., Zbair, M., Ezahri, M., Benlhachemi, A., Bakiz, B., Guinneton, F., & Gavarri, J. R. (2016). Structural and Temperature-dependent vibrational analyses of the non-centrosymmetric ZnMoO4 molybdate. Journal of Materials and Environmental Science, 7(9), 3076-3083.
Astuti, Y., Listyani, B. M., Suyati, L., & Darmawan, A. (2021). Bismuth oxide prepared by sol-gel method: Variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indonesian Journal of Chemistry, 21(1), 108-117.https://doi.org/10.22146/ijc.53144
Bharathi, V., Sivakumar, M., Udayabhaskar, R., Takebe, H., & Karthikeyan, B. (2014). Optical, structural, enhanced local vibrational and fluorescence properties in K-doped ZnO nanostructures. Applied Physics A: Materials Science and Processing, 116(1), 395-401.
https://doi.org/10.1007/s00339-013-8139-8
Chen, P., Zhang, Z., Yang, S., Yang, Y., & Sun, Y. (2021). Synthesis of BiOCl/ZnMoO4 heterojunction with oxygen vacancy for enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 32(18), 23189-23205. https://doi.org/10.1007/s10854-021-06805-6
Dwi, J., Anam, K., & Kusrini, D. (2016). Penentuan Total Kadar Fenol dari Daun Kersen Segar, Kering dan Rontok (Muntingia calabura L.) serta Uji Aktivitas Antioksidan dengan Metode DPPH. Jurnal Kimia Sains Dan Aplikasi, 19(1), 15-20 https://doi.org/10.14710/jksa.19.1.15-20
Fei, J., Sun, Q., Li, J., Cui, Y., Huang, J., Hui, W., & Hu, H. (2017). Synthesis and electrochemical performance of α-ZnMoO4 nanoparticles as anode material for lithium ion batteries. Materials Letters, 198(3), 4-7. https://doi.org/10.1016/j.matlet.2017.03.160
Fialová, S., Tekel'ová, D., Švajdlenka, E., Potúček, P., Jakubová, K., & Grančai, D. (2014). The variability of secondary metabolites in Mentha × piperita cv. "Perpeta" during the development of inflorescence. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 61(2), 21-25. https://doi.org/10.2478/afpuc-2014-0012
Jiang, Y. R., Lee, W. W., Chen, K. T., Wang, M. C., Chang, K. H., & Chen, C. C. (2014). Hydrothermal synthesis of β-ZnMoO4 crystals and their photocatalytic degradation of Victoria Blue R and phenol. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 207-218.https://doi.org/10.1016/j.jtice.2013.05.007
Ken Gillman, P. (2011). Review: CNS toxicity involving methylene blue: The exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. Journal of Psychopharmacology, 25(3), 429-436.https://doi.org/10.1177/0269881109359098
Liebel, F., Kaur, S., Ruvolo, E., Kollias, N., & Southall, M. D. (2012). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. Journal of Investigative Dermatology, 132(7), 1901-1907. https://doi.org/10.1038/jid.2011.476
Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction Photocatalysts. Advanced Materials, 29(20), 1-20.
https://doi.org/10.1002/adma.201601694
Lv, L., Tong, W., Zhang, Y., Su, Y., & Wang, X. (2011). Metastable monoclinic ZnMoO 4: Hydrothermal synthesis, optical properties and photocatalytic performance. Journal of Nanoscience and Nanotechnology, 11(11), 9506-9512.
https://doi.org/10.1166/jnn.2011.5269
Mardare, C. C., Tanasic, D., Rathner, A., Müller, N., & Hassel, A. W. (2016). Growth inhibition of Escherichia coli by zinc molybdate with different crystalline structures. Physica Status Solidi (A) Applications and Materials Science, 213(6), 1471-1478. https://doi.org/10.1002/pssa.201532786
Meng, X., Hao, M., Shi, J., Cao, Z., He, W., Gao, Y., … Li, Z. (2017). Novel CuO/Bi2WO6 heterojunction with enhanced visible light photoactivity. Advanced Powder Technology, 28(12), 3247-3256.
https://doi.org/10.1016/j.apt.2017.09.036
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118. https://doi.org/10.17509/ijost.v4i1.15806
https://doi.org/10.17509/ijost.v4i1.15806
Petrović, M., Rančev, S., Velinov, N., Radović Vučić, M., Antonijević, M., Nikolić, G., & Bojić, A. (2021). Triclinic ZnMoO4 catalyst for atmospheric pressure non-thermal pulsating corona plasma degradation of reactive dye; role of the catalyst in plasma degradation process. Separation and Purification Technology, 269(April). https://doi.org/10.1016/j.seppur.2021.118748
Pham, H. L., Nguyen, V. D., Nguyen, V. K., Le, T. H. P., Ta, N. B., Pham, D. C.,Dang, V. T. (2021). Rational design of magnetically separable core/shell Fe3O4/ZnO heterostructures for enhanced visible-light photodegradation performance. RSC Advances, 11(36), 22317-22326. https://doi.org/10.1039/D1RA03468E
Puspitasari, L., Mareta, S., & Thalib, A. (2021). Karakterisasi Senyawa Kimia Daun Mint (Mentha sp.) dengan Metode FTIR dan Kemometrik. Sainstech Farma, 14(1), 5-11. Retrieved from https://ejournal.istn.ac.id/index.php/saintechfarma/article/view/931
Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., & Siengchin, S. (2021). Release of toxic methylene blue from water by mesoporous silicalite-1: characterization, kinetics and isotherm studies. Applied Water Science, 11(7), 1-12. https://doi.org/10.1007/s13201-021-01435-z
Reddy, B. J., Vickraman, P., & Justin, A. S. (2018). Investigation of novel zinc molybdate-graphene nanocomposite for supercapacitor applications. Applied Physics A: Materials Science and Processing, 124(6), 1-9.
https://doi.org/10.1007/s00339-018-1793-0
Riwayati, I., Fikriyyah, N., & Suwardiyono, S. (2019). ADSORPSI ZAT WARNA METHYLENE BLUE MENGGUNAKAN ABU ALANG-ALANG (Imperata cylindrica) TERAKTIVASI ASAM SULFAT. Jurnal Inovasi Teknik Kimia, 4(2), 6-11. https://doi.org/10.31942/inteka.v4i2.3016
Sagadevan, S., Fatimah, I., Egbosiub, T. C., Alshahateet, S. F., Lett, J. A., Weldegebrieal, G. K., … Johan, M. R. (2022). Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 430-450.
https://doi.org/10.9767/bcrec.17.2.13948.430-450
Simi, A., & Azeeza, V. (2010). Removal of methylene blue dye using low cost adsorbent. Asian Journal of Chemistry, 22(6), 4371-4376.
Sirirerkratana, K., Kemacheevakul, P., & Chuangchote, S. (2019). Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. Journal of Cleaner Production, 215, 123-130. https://doi.org/10.1016/j.jclepro.2019.01.037
Wang, J. C., Lou, H. H., Xu, Z. H., Cui, C. X., Li, Z. J., Jiang, K., … Shi, W. (2018). Natural sunlight driven highly efficient photocatalysis for simultaneous degradation of rhodamine B and methyl orange using I/C codoped TiO2 photocatalyst. Journal of Hazardous Materials, 360, 356-363.
https://doi.org/10.1016/j.jhazmat.2018.08.008
Weldegebrieal, G. K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120(July), 108140.
https://doi.org/10.1016/j.inoche.2020.108140
Widiyandari, H., Ketut Umiati, N. A., & Dwi Herdianti, R. (2018). Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method. Journal of Physics: Conference Series, 1025(1).
https://doi.org/10.1088/1742-6596/1025/1/012004
Xing, X., Xu, X., Wang, J., & Hu, W. (2019). Preparation and inhibition behavior of ZnMoO4/reduced graphene oxide composite for Q235 steel in NaCl solution. Applied Surface Science, 479(February), 835-846. https://doi.org/10.1016/j.apsusc.2019.02.149
Yan, Q., Wang, P., Guo, Y., Chen, Y., Si, Y., & Zhang, M. (2019). Constructing a novel hierarchical ZnMoO4/BiOI heterojunction for efficient photocatalytic degradation of tetracycline. Journal of Materials Science: Materials in Electronics, 30(20), 19069-19076. https://doi.org/10.1007/s10854-019-02264-2
Yulizar, Y., Apriandanu, D. O. B., & Ashna, R. I. (2020). La2CuO4-decorated ZnO nanoparticles with improved photocatalytic activity for malachite green degradation. Chemical Physics Letters, 755(June).
https://doi.org/10.1016/j.cplett.2020.137749
Yulizar, Y., Bakri, R., Apriandanu, D. O. B., & Hidayat, T. (2018). ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao. Nano-Structures and Nano-Objects, 16, 300-305. https://doi.org/10.1016/j.nanoso.2018.09.003
Zhang, Z., Feng, C., Liu, J., & Guo, Z. (2019). Synthesis of ZnMoO4 with different polymorphas anode materials for lithium-ion batteries application. Journal of Materials Science: Materials in Electronics, 30(22), 20213-20220.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ridla Bakri, Rika Firmansyah, Yoki Yulizar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.