Water Hyacinth Potential in The Pollution Impact Reduction of Coffee Agroindustry Wastewater
DOI:
https://doi.org/10.21771/jrtppi.2023.v14.no2.p10-22Keywords:
agroindustry, phytoremediation, wastewater technologyAbstract
Coffee processing wastewater originating from the coffee agroindustry has the potential to reduce environmental quality. Water hyacinth is one of the biological agents capable of reducing pollutants in wastewater through a rhizo-filtration mechanism in the phytoremediation process. The pollutant reducing ability of water hyacinth is limited so that the replacement of water hyacinth is one of the alternatives for optimizing the phytoremediation method. The purpose of this research was to compare the replacement time of water hyacinth to the decrease parameters namely turbidity, Biochemicals Oxygen Demand (BOD), Chemicals Oxygen Demand (COD), ammonia, and phosphate in the treatment of coffee processing wastewater using the phytoremediation method. The research stages consisted of water hyacinth acclimatization, determination of hydraulic resistance time, water hyacinth replacement time, and analysis of wastewater pollutant reduction. The density of water hyacinth used is 30 grams / L and the incubation time is 14 days. The results showed that the replacement of water hyacinth had a positive effect on improving the quality of coffee processing wastewater. The most water hyacinth replacement was on the 7th day. The percentage of turbidity parameters, Biochemicals Oxygen Demand (BOD), Chemicals Oxygen Demand (COD), ammonia (NH3-N), and phosphate (PO4-P) in the treatment of coffee processing wastewater with replacement of water hyacinth sequentially is 92.02%; 81.10%; 81.05%; 76.03% and 72.40%.References
Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavas, I., Unay, A., Abdel-Diam, M. M., Bin-Jumah, M., Hasanuzzaman, M. & Kalderis, D. (2020).
Application of Floating Aquatic Plant in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(1927), 1-33. https://doi.org/10.3390/su12051927
Arorami, D. O., Majekomduni, O. T., Adeniran, J. A., & Salawudeen, T. O. (2018). Modeling of Activated Sludge Process for Effluent Prediction-a Comparative Using ANFIS and GLM Regression. Environment Monitoring Assessment, 190(495), 1-17. https://doi.org/10.16966/2381-5299.17
Bais, S. S., Lawrence, K. & Pandey, A. K. (2016). Phytoremediation Potential of Eichhornia crassipes (Mart.) Solms. International Environmental Agriculture Biotechnology, 1, 210-2017. https://doi.org/10.22161/ijeab/1.2.16
Buck, N., Wohlt, D., Winter, A. R. and Ortner, E. (2021). Aroma-Active Compound in Robusta Coffee Pulp Puree-Evaluation of Physicochemical and Sensory Properties. Molecules, 26(3925): 1-14. https://doi.org/10.3390/molecules26133925
Campos, R. C., Pinto, V. R. A., Melo, L. F., da Rocha, S. J. S. S. & Coibra, J. S. (2021). New Sustainable Perspectives for "Coffee Wastewater" and Other by-Products: A Critical Review. Future Food, 4(2021), 1-10. https://doi.org/10.1016/j.fufo.2021.100058
Crini, G. & Lichtfouse, E. (2019). Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environment Chemicals Letters, 17, 145-155. https://doi.org/10.1007/s10311-018-0785-9
Cruz-Salomon, A., Rios-Valdovinos, E., Pola-Alberos, F., Lagunas-Rivera, S., Meza-Gordillo, R. & Ruiz-Valdiviezo, V.M. (2018). Evaluation of Hydraulic Retention Time on Treatment of Coffee Processing Wastewater (CPWW) in EGSB Bioreactor. Sustainability, 10(83), 1-11. https://doi.org/10.3390/su10010083
da-Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borem, F. M. & Schwan, R. F. (2020). Influence of Fermentation Conditions on the Sensorial Quality of Coffee Inoculated with Yeast. Food Research International, 136(2020), 1-8. https://doi.org/10.1016/j.foodres.2020.109482
Damanik-Ambarita, M. N., Everaert, G., Fario, M. A. E., Nguyen, T. H. T., Lock, K., Musonge, P. L. S., Suhareva, N., Dominguez-Granda, L., Bennetsen, E., Boets, P. dan Goethals, P. L. M. (2016). Generalized Linier Models to Identify Key Hydromorphological and Chemical Variabel Determining the Occurrence of Macroinvertebrates in the Guayas River Basin (Equador). Water. 8(7), 297. https://doi.org/10.1007/10.3390/w8070297
Delgado-Gonzalez, C. R., Madariaga-Navarrete, A., Fernandez-Cortes, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M. & Sharma, A. (2021). Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. International Journal of Environmental Research and Public Health, 18(5215), 1-21. https://doi.org/10.3390/ijerph18105215
Denisi, P., Biondono, N., Bombino, G., Falino, A., Zema, D. A. & Zimbone, S. M. (2021). A Combined System Using Lagoons and Constructed Wetland for Swine Wastewater Treatment. Sustainability, 13(12390), 1-14. https://doi.org/10.3390/su132212390
Elizabeth, J., Yuniati, R., & Wardhana, W. (2020). The Capacity of Water Hyacinth as Biofilter and Bioaccumulator based on Its Size. IOP Conferences Series: Material, Science, and Engineering, 902(012064), 1-17. https://doi.org/10.1088/1757-899X/902/1/012067
Firdissa, E., Mohammed, A., Berecha, G. & Garedew, W. (2022). Coffee Drying and Processing Method Influence Quality of Arabica Coffee Varieties (Coffee arabica L.) at Gomma I and Limmu Kossa, Southwest Ethiopia. Journal of Food Quality, 2022, 1-8.
Genanaw, W., Kanno, G. G., Derese, D., & Aregu, B. (2021). Effect of Wastewater Discharge from Coffee Processing Plant on River Water Quality, Sidagama Region, South Ethiopia. Environmental Health Insights, 15(2021). https://doi.org/10.1177/11786302211061047
Ghosh, K. & Sarkar, A. (2021). Evaluating Urban Wastewater Remediation Efficiency of the Hydroponic Vetiver System Through Predictive Modelling Using Artificial Neural Network. Environmental Technology & Innovation, 24(2021), 1-15. https://doi.org/10.1016/j.eti.2021.102007
Hasibuan, E. N., Djalalemah, A., Asmar, G. A. & Cahyonugroho, O. H. (2018). The Growth Rate and Chlorophyll Content of Water Hyacinth under Different Type of Water Sources. IOP Conferences Series: Material, Science, and Engineering, 902(012064), 1-17. https://doi.org/10.1088/1757-899X/902/1/012064
Ijanu, E. M., Kamarudin, M. A. & Norashiddin, F. A. (2020). Coffee Wastewater Treatment: a Critical Review on Current Treatment Technologies with a Proposed Alternative. Applied Water Science, 10(11), 1-11. https://doi.org/10.1007/s13201-019-1091-9
Jones, J. L., Jenkins, R. O. & Haris, P. I. (2018). Extending the Geographics Reach of the Water Hyacinth Plant in Removal of Heavy Metals from Temperature Northern Hemisphere River. Scientific Report, 8(11071), 1-15. https://doi.org/10.1038/s41598-018-29387-6
Materac, M., Wyrwicka, A., & Sobiecka, E. (2015). Phytoremediation Techniques in Wastewater Treatment. Environmental Biotechnology, 11(1), 10-13. https://doi.org/10.14799/ebms249
Mi, Z., Idrees, I., Danish, P., Ahmad, S., Ali Q., & Malik, A. (2020). Potetntial of Water Hyacinth (Eichhornia crassipes L.) for Phytoremediation of Heavy Metals from Wastewater. Biological and Chinicals Sciences Research Journal, 2020(1), 1-7. https://doi.org/10.54112/bcsrj.v2020i1.6
Minister of Environment of the Republic of Indonesia. 2014. Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang Baku Mutu Air Limbah. Jakarta.
Novita, E., Salim, M. B. & Pradana, H. A. (2021a). Coffee Industry Wastewater Treatment with Coagulation-Flocculation Method Using a natural Coagulant of Tamarind Seeds (Tamarindus indica L.). Jurnal Teknologi Pertanian, 22(1), 13-24. https://doi.org/10.21776/ub.jtp.2021.022.01.2
Novita, E., Wahyuningsih, S. & Adinda, C. (2021b). Studi Kelayakan Teknik dan Biaya Terhadap Alternatif Fitoremediation pada Air Limbah Pengolahan Kopi. Agrointek, 15(2), 513-520. https://doi.org/10.21107/agrointek.v15i2.9056
Novita, E., Wahyuningsih, S., Safrizal, M. R., Puspitasari, A. I. & Pradana, H. A. (2022). Kajian Perbaikan Kualitas Air Limbah Pengolahan Kopi Menggunakan Metode Fitoremediasi dengan Tanaman Eceng Gondok (Eichhornia crassipes). Jurnal Sains dan Teknologi, 11(1), 197-203. https://doi.org/10.23887/jstundiksha.v11i1.45298
Peng, H., Wang, Y., Tan, T. L. & Chen, Z. (2020). Exploring the Phytoremediation Potential of Water Hyacinth by FTIR Spectroscopy and ICP-OES for Treatment of Heavy Metal Contaminated Water. International Journal of Phytoremediation, 22(9):939-951. https://doi.org/10.1080/15226514.2020.1774499
Polinska, W., Kotowaska, U., Kiejza, D., & Karpinska, J. (2021). Insight in to the Use Phytoremediation Processes for Removal of Organic Micropollutans from Water and Wastewater; A Review. Water, 13(2065), 1-19. https://doi.org/10.3390/w13152065
Rattan, S., Parande, A. K., Nagaraju, V. D. & Ghiwari, G. K. (2015). A Comprehensive Review on Utulization of Wastewater from Coffee Processing. Environment Science Pollution Research International, 22(9), 6461-6472. https://doi.org/10.1007/s11356-015-4079-5
Rezania, S., Din, M. F. Md., Taib, S. M., Dahalan, F. A., Songip, A. R., Singh, L. & Kamyab, H. (2016). The Efficient Role of Aquatic Plant (Water Hyacinth) in Treating Domestic Wastewater in Continuous System. International Journal of Phytoremediation, 18(7), 679-685. http://dx.doi.org/10.1080/15226514.2015.1130018
Rukmawati, B. S., Novita, E., Wahyuningsih, S. & Siswoyo, S. (2015). Circulation Effect of Coffee Wastewater Flow in Water Hyacinth Phytoremediation. The 1st Young Scientist International Conferences of Water Resources Development and Environmental Protection, Malang, Indonesia, 5-7 June 2015.
Safauldeen, S. H., Hasan, H. A. & Abdullah, S. R. S. (2019). Phytoremediation Efficiency of Water Hyacinth for Batik Textile Effluent Treatment. Journal of Ecological Engineering. 20(9), 177-187. http://dx.doi.org/10.1080/10.12911/22998993/112492
Saha, P., Shide, O. & Sarkar, S. (2017). Phytoremediation of Industrial Mines Wastewater Using Water Hyacinth. International Journal of Phytoremediation, 19(1), 87-96. http://dx.doi.org/10.1080/15226514.2016.1216078
Singh, N. & Balomajumder, C. (2021). Phytoremediation Potential of Water Hyacinth (Echhornia crassipes) for Phenol and Cyanide Elimination from Synthetic/Simulated Wastewater. Applied Water Science, 11(144), 1-15. http://dx.doi.org/10.1007/s13201-021-01472-8
Simanjuntak, N. A. M., Zahra, N. L. & Suryawan, I. W. K. (2022). Decision Making for Biological Tofu Wastewater Treatment to Improve Quality Wastewater Treatment Plant (WWTP) using Analytical Hierarcy Process (AHP). Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 13(1), 20-34.
Valipour, A., Raman, V. K. & Ahn, Y-H. (2015). Effectiveness of Domestic Wastewater Treatment Using Bio-Hedge Water Hyacinth Wetland System. Water, 7, 329-347. https://doi.org/10.3390/w7010329
Wangphoom, T., Saleepochn, T., Noophan, P. L., & Li, C-W. (2022). Effects of Caffeine and COD from Coffee Wastewater on Anaerobic Ammonium Oxidation (Anammox) Activities. Water, 14(2238), 1-14. https://doi.org/10.3390/w14142238
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Elida Novita, Sri Wahyuningsih, Mastuki Andika, Hendra Andiananta Pradana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.