The Potency of Biodiesel Production from The Local Used Frying Oil Through The Electrocatalysis Method
DOI:
https://doi.org/10.21771/jrtppi.2023.v14.no1.p40-52Keywords:
Biodiesel, electrocatalyst, methanol, used frying oil, yieldAbstract
The objective of this study was to optimize the operating conditions for an electrocatalytic method of producing biodiesel from local used frying oil (UFO). The effects of electrical voltages (5-30 V), methanol-to-oil molar ratios (4:1-8:1), KOH catalyst concentrations (0.5-1.25% w/w), and electrolysis time (30-120 min) on biodiesel yield were investigated. The highest biodiesel yield of 95.3% was obtained at a voltage of 30 V, methanol-to-oil molar ratio of 6:1, catalyst concentration of 1% w/w, and electrolysis time of 120 min. A regression model was developed to predict the optimum operating conditions, resulting in a maximum biodiesel yield of 95.54%. The predicted optimum operating conditions were a voltage of 24.4 V, methanol-to-oil molar ratio of 5.8:1, catalyst concentration of 1% w/w, and electrolysis time of 120 min. The net profit of the biodiesel business using local UFO as a feedstock was estimated to be IDR 738,000 per month based on a simple economic calculation. These findings demonstrate the potential for using electrocatalytic methods to produce biodiesel from local UFO, and the economic feasibility of producing biodiesel in small-scale industries.References
A. A. Hassan and J. D. Smith, “Investigation of microwave-assisted transesterification reactor of waste cooking oil,” Renew. Energy, vol. 162, pp. 1735–1746, 2020, doi: 10.1016/j.renene.2020.09.123.
A. Talebian-Kiakalaieh, N. A. S. Amin, and H. Mazaheri, “A review on novel processes of biodiesel production from waste cooking oil,” Appl. Energy, vol. 104, pp. 683–710, 2013, doi: 10.1016/j.apenergy.2012.11.061.
D. Lauka and D. Blumberga, “Electrolysis Process Analysis by Using Low Carbon Content Additives: A Batch Test Study,” Energy Procedia, vol. 72, pp. 196–201, 2015, doi: 10.1016/j.egypro.2015.06.028.
D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, no. October, p. 116553, 2020, doi: 10.1016/j.fuel.2019.116553.
D. Widayat, H. N. Aulia, D. Hadiyanto, and S. B. Sasongko, “Kinetic study on ultrasound assisted biodiesel production fromwaste cooking oil,” J. Eng. Technol. Sci., vol. 47, no. 4, pp. 374–388, 2015, doi: 10.5614/j.eng.technol.sci.2015.47.4.3.
E. Kurniawan and N. Nurhayati, “Transesterfication Process of Waste Cooking Oil Catalyzed by Na/CaO Derived from Blood Clam (Anadara Granosa) Shells,” EKSAKTA J. Sci. Data Anal., vol. 1, no. 1, pp. 1–6, 2020, doi: 10.20885/eksakta.vol1.iss1.art1.
E. H. Pryde, “Vegetable oils as diesel fuels: Overview,” J. Am. Oil Chem. Soc., vol. 60, no. 8, pp. 1557–1558, 1983, doi: 10.1007/BF02666584.
F. Cao et al., “Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid,” Biotechnol. Bioeng., vol. 101, no. 1, pp. 93–100, 2008, doi: 10.1002/bit.21879.
G. Guan and K. Kusakabe, “Synthesis of biodiesel fuel using an electrolysis method,” Chem. Eng. J., vol. 153, no. 1–3, pp. 159–163, 2009, doi: 10.1016/j.cej.2009.06.005.
I. A. Mohammed-Dabo, M. S. Ahmad, A. Hamza, K. Muazu, and A. Aliyu, “Cosolvent transesterification of Jatropha curcas seed oil,” J. Pet. Technol. Altern. Fuels, vol. 3, no. 4, pp. 42–51, 2012, doi: 10.5897/JPTAF11.038.
I. Nurfitri, G. P. Maniam, N. Hindryawati, M. M. Yusoff, and S. Ganesan, “Potential of feedstock and catalysts from waste in biodiesel preparation: A review,” Energy Convers. Manag., vol. 74, pp. 395–402, 2013, doi: 10.1016/j.enconman.2013.04.042.
I. Reyero, G. Arzamendi, S. Zabala, and L. M. Gandía, “Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel,” Fuel Process. Technol., vol. 129, pp. 147–155, 2015, doi: 10.1016/j.fuproc.2014.09.008.
J. J. Lin and Y. W. Chen, “Production of biodiesel by transesterification of Jatropha oil with microwave heating,” J. Taiwan Inst. Chem. Eng., vol. 75, pp. 43–50, 2017, doi: 10.1016/j.jtice.2017.03.034.
J. Lie, M. B. Rizkiana, F. E. Soetaredjo, Y. H. Ju, S. Ismadji, and M. Yuliana, “Non-catalytic Transesterification of Waste Cooking Oil with High Free Fatty Acids Content Using Subcritical Methanol: Process Optimization and Evaluation,” Waste and Biomass Valorization, vol. 11, no. 11, pp. 5771–5781, 2020, doi: 10.1007/s12649-019-00889-2.
L. C. Meher, D. Vidya Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification - A review,” Renew. Sustain. Energy Rev., vol. 10, no. 3, pp. 248–268, 2006, doi: 10.1016/j.rser.2004.09.002.
L. Fereidooni and M. Mehrpooya, “Experimental assessment of electrolysis method in production of biodiesel from waste cooking oil using zeolite/chitosan catalyst with a focus on waste biorefinery,” Energy Convers. Manag., vol. 147, pp. 145–154, 2017, doi: 10.1016/j.enconman.2017.05.051.
L. Zhang, Q. Jin, K. Zhang, J. Huang, and X. Wang, “The optimization of conversion of waste edible oil to fatty acid methyl esters in homogeneous media,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 34, no. 8, pp. 711–719, 2012, doi: 10.1080/15567030903567709.
M. Abdollahi Asl, K. Tahvildari, and T. Bigdeli, “Eco-friendly synthesis of biodiesel from WCO by using electrolysis technique with graphite electrodes,” Fuel, vol. 270, no. March, p. 117582, 2020, doi: 10.1016/j.fuel.2020.117582.
M. Aghbashlo et al., “Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction,” Biofuel Res. J., vol. 3, no. 4, pp. 528–535, 2016, doi: 10.18331/BRJ2016.3.4.7.
M. Tabatabaei et al., “Reactor technologies for biodiesel production and processing: A review,” Prog. Energy Combust. Sci., vol. 74, pp. 239–303, 2019, doi: 10.1016/j.pecs.2019.06.001.
M. Tariq et al., “Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil,” Fuel Process. Technol., vol. 92, no. 3, pp. 336–341, 2011, doi: 10.1016/j.fuproc.2010.09.025.
O. Babajide, “Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production,” Catal. Today, vol. 201, no. 1, p. 210, 2013, doi: 10.1016/j.cattod.2012.09.006.
R. Betha, S. Pavagadhi, S. Sethu, M. P. Hande, and R. Balasubramanian, “Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel,” Atmos. Environ., vol. 61, pp. 23–29, 2012, doi: 10.1016/j.atmosenv.2012.06.086.
R. S. Putra, P. Hartono, and T. S. Julianto, “Conversion of Methyl Ester from Used Cooking Oil: The Combined Use of Electrolysis Process and Chitosan,” Energy Procedia, vol. 65, pp. 309–316, 2015, doi: 10.1016/j.egypro.2015.01.057.
R. S. Putra, A. Liyanita, N. Arifah, E. Puspitasari, Sawaludin, and M. N. Hizam, “Enhanced Electro-Catalytic Process on the Synthesis of FAME Using CaO from Eggshell,” Energy Procedia, vol. 105, no. May, pp. 289–296, 2017, doi: 10.1016/j.egypro.2017.03.316.
S. Hama, A. Yoshida, N. Tamadani, H. Noda, and A. Kondo, “Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: An engineering approach to separation of hydrophilic impurities,” Bioresour. Technol., vol. 135, pp. 417–421, 2013, doi: 10.1016/j.biortech.2012.06.059.
S. Rezania et al., “Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications,” Energy Convers. Manag., vol. 201, no. October, p. 112155, 2019, doi: 10.1016/j.enconman.2019.112155.
W. P. Wicaksono, S. A. Jati, I. Yanti, and P. K. Jiwanti, “Co-Solvent Free Electrochemical Synthesis of Biodiesel Using Graphite Electrode and Waste Concrete Heterogeneous Catalyst: Optimization of Biodiesel Yield,” Bull. Chem. React. Eng. Catal., vol. 16, no. 1, pp. 179–187, 2021, doi: 10.9767/bcrec.16.1.10310.179-187.
Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates, “Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis,” Bioresour. Technol., vol. 90, no. 3, pp. 229–240, 2003, doi: 10.1016/S0960-8524(03)00150-0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Haris Numan Aulia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.