The pH-electrodeposition-dependant of Iron Oxide Toward The Physicochemical Characteristics and Electrochemical Performance in Biorefractory Pollutant Degradation
DOI:
https://doi.org/10.21771/jrtppi.2023.v14.no1.p8-18Keywords:
electrodeposition, iron oxide, nanoparticles, biorefractory pollutant, electrochemical degradationAbstract
Electrodeposition of the iron oxide (FexOy) nanoparticles on the graphite felt was prepared from a mixture of iron (II) and iron (III) precursor solution with various pHs (2, 7, and 10) by applying a constant current (galvanostatic) of 0.1 A for 30 minutes. Each resulting sample was coded GF/FexOy -2, GF/FexOy -7, and GF/FexOy -10, respectively. Graphite felt without modification, Raw-GF, was used as control. The mass of iron oxide (FexOy) deposited ranged from 0.02 to 0.03 grams. The product characterisation using a Scanning Electron Microscope (SEM) showed the distribution of 500 nm particles on the surface of the graphite felt for the GF/FexOy -2 sample. In comparison, the distribution of larger particles (1 – 2 μm) was observed in the samples of GF/FexOy -7 and GF/FexOy -10, respectively. Spectrum resulting from an X-ray Diffraction Spectroscopy (XRD) showed the formation of iron oxides (FexOy) such as magnetite (Fe3O4), haematite (Fe2O3), goethite (FeOOH), and lepidocrocite (FeO(OH)). Fourier Transform Infra-Red (FTIR) spectrum also confirmed the presence of Fe2O3 in the GF/FexOy -2 sample, Fe3O4 in the GF/FexOy -7 and GF/FexOy -10 samples, and FeOOH in all three samples. Applying the iron oxide modified graphite felt in the electro-Fenton approach process without aeration showed that it can degrade bio-refractory pollutants, such as methyl orange. The observed degradations of methyl orange were a decrease in the colour intensity up to 81.37% and a decrease in the COD up to 49.85%.References
Aghazadeh, M. (2019). Electrochemical Synthesis of Dextran-and Polyethyleneimine-Coated Superparamagnetic Iron Oxide Nanoparticles and Investigation of their Physico-chemical Characters. ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY, 11(3), 362–372.
Aghazadeh, M., & Ganjali, M. R. (2018). Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization. Journal of Materials Science, 53(1), 295–308. https://doi.org/10.1007/s10853-017-1514-7
Baig, S., & Liechti, P. A. (2001). Ozone treatment for biorefractory COD removal. Water Science and Technology, 43(2), 197–204. https://doi.org/10.2166/wst.2001.0090
Barrera-Díaz, C., Linares-Hernández, I., Roa-Morales, G., Bilyeu, B., & Balderas-Hernández, P. (2009). Removal of Biorefractory Compounds in Industrial Wastewater by Chemical and Electrochemical Pretreatments. Industrial & Engineering Chemistry Research, 48(3), 1253–1258. https://doi.org/10.1021/ie800560n
Ben Hafaiedh, N., Fourcade, F., Bellakhal, N., & Amrane, A. (2020). Iron oxide nanoparticles as heterogeneous electro-Fenton catalysts for the removal of AR18 azo dye. Environmental Technology, 41(16), 2146–2153. https://doi.org/10.1080/09593330.2018.1557258
Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690
Fard, G. C., Mirjalili, M., & Najafi, F. (2018). Preparation of nano-cellulose/Α-Fe2O3 hybrid nanofiber for the cationic dyes removal: Optimization characterization, kinetic, isotherm and error analysis. Bulgarian Chemical Communications, 50(August), 251–261.
Ganiyu, S. O., Huong Le, T. X., Bechelany, M., Oturan, N., Papirio, S., Esposito, G., … Oturan, M. A. (2018). Electrochemical mineralization of sulfamethoxazole over wide pH range using FeIIFeIII LDH modified carbon felt cathode: Degradation pathway, toxicity and reusability of the modified cathode. Chemical Engineering Journal, 350, 844–855. https://doi.org/https://doi.org/10.1016/j.cej.2018.04.141
Ghernaout, D., Ghernaout, B., Boucherit, A., Naceur, M. W., Khelifa, A., & Kellil, A. (2009). Study on mechanism of electrocoagulation with iron electrodes in idealised conditions and electrocoagulation of humic acids solution in batch using aluminium electrodes. Desalination and Water Treatment, 8(1–3), 91–99. https://doi.org/10.5004/dwt.2009.668
Guivarch, E., Trevin, S., Lahitte, C., & Oturan, M. A. (2003). Degradation of azo dyes in water by Electro-Fenton process. Environmental Chemistry Letters, 1(1), 38–44. https://doi.org/10.1007/s10311-002-0017-0
Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45(6), 2207–2212. https://doi.org/https://doi.org/10.1016/j.watres.2011.01.012
Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., & Chen, M. (2015). Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0132067
Huiqun, C., Meifang, Z., & Yaogang, L. (2006). Decoration of carbon nanotubes with iron oxide. Journal of Solid State Chemistry, 179(4), 1208–1213. https://doi.org/https://doi.org/10.1016/j.jssc.2005.12.040
Huong Le, T. X., Bechelany, M., & Cretin, M. (2017). Carbon felt based-electrodes for energy and environmental applications: A review. Carbon, 122, 564–591. https://doi.org/https://doi.org/10.1016/j.carbon.2017.06.078
Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179. https://doi.org/https://doi.org/10.1016/j.crgsc.2021.100179
Jiang, H., Sun, Y., Feng, J., & Wang, J. (2016). Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles. Water Science and Technology, 74(5), 1116–1126. https://doi.org/10.2166/wst.2016.300
Kgatle, M., Sikhwivhilu, K., Ndlovu, G., & Moloto, N. (2021). Degradation Kinetics of Methyl Orange Dye in Water Using. Catalysts, 11, 428.
Koo, K. N., Ismail, A. F., Othman, M. H. D., Rahman, M. A., & Sheng, T. Z. (2019). Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review. Malaysian Journal of Fundamental and Applied Sciences, 15(1), 23–31.
Kosimaningrum, W. E., Le, T. X. H., Holade, Y., Bechelany, M., Tingry, S., Buchari, B., … Cretin, M. (2017). Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis. ACS Applied Materials & Interfaces, 9(27), 22476–22489. https://doi.org/10.1021/acsami.7b04651
Le, T. X. H., Bechelany, M., Lacour, S., Oturan, N., Oturan, M. A., & Cretin, M. (2015). High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon, 94, 1003–1011. https://doi.org/10.1016/j.carbon.2015.07.086
Le, T. X. H., Cowan, M. G., Drobek, M., Bechelany, M., Julbe, A., & Cretin, M. (2019). Fe-nanoporous carbon derived from MIL-53(Fe): A heterogeneous catalyst for mineralization of organic pollutants. Nanomaterials, 9(4), 1–11. https://doi.org/10.3390/nano9040641
Lian, T., Huang, C., Liang, F., Li, X., & Xi, J. (2019). Simultaneously Providing Iron Source toward Electro-Fenton Process and Enhancing Hydrogen Peroxide Production via a Fe3O4 Nanoparticles Embedded Graphite Felt Electrode. ACS Applied Materials & Interfaces, 11(49), 45692–45701. https://doi.org/10.1021/acsami.9b16236
Liu, K., Yu, J. C.-C., Dong, H., Wu, J. C. S., & Hoffmann, M. R. (2018). Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode. Environmental Science & Technology, 52(21), 12667–12674. https://doi.org/10.1021/acs.est.8b03916
Liu, W., Howell, J. A., Arnot, T. C., & Scott, J. A. (2001). A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics: application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt. Journal of Membrane Science, 181(1), 127–140. https://doi.org/https://doi.org/10.1016/S0376-7388(00)00496-8
Martinez, L., Leinen, D., Martín, F., Gabas, M., Ramos-Barrado, J. R., Quagliata, E., & Dalchiele, E. A. (2007). Electrochemical Growth of Diverse Iron Oxide (Fe[sub 3]O[sub 4], α-FeOOH, and γ-FeOOH) Thin Films by Electrodeposition Potential Tuning. Journal of The Electrochemical Society, 154(3), D126. https://doi.org/10.1149/1.2424416
Miao, J., Zhu, H., Tang, Y., Chen, Y., & Wan, P. (2014). Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chemical Engineering Journal, 250, 312–318. https://doi.org/https://doi.org/10.1016/j.cej.2014.03.043
Parshetti, G. K., Telke, A. A., Kalyani, D. C., & Govindwar, S. P. (2010). Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials, 176(1–3), 503–509. https://doi.org/10.1016/j.jhazmat.2009.11.058
Petrov, D. A., Lin, C. R., Ivantsov, R. D., Ovchinnikov, S. G., Zharkov, S. M., Yurkin, G. Y., … Lyubutin, I. S. (2020). Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag. Nanotechnology, 31(39). https://doi.org/10.1088/1361-6528/ab9af2
Prasetyo, I., Akbar, F., Prabandari, A. W., & Ariyanto, T. (2019). Fenton Oxidation using Easily Recoverable Catalyst of Magnetite (Fe3O4) as an Efficient Approach to Treatment of Rhodamine B Dyeing Effluent in Traditional Fabrics Industry. ASEAN Journal on Science and Technology for Development, 36(3), 103–108. https://doi.org/10.29037/ajstd.592
Raghu, M. S., Yogesh Kumar, K., Prashanth, M. K., Prasanna, B. P., Vinuth, R., & Pradeep Kumar, C. B. (2017). Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. Journal of Water Process Engineering, 17(March), 22–31. https://doi.org/10.1016/j.jwpe.2017.03.001
Rajoriya, S., Carpenter, J., Saharan, V. K., & Pandit, A. B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Reviews in Chemical Engineering, 32(4), 379–411. https://doi.org/10.1515/revce-2015-0075
Sidney Santana, C., Freire Bonfim, D. P., da Cruz, I. H., da Silva Batista, M., & Fabiano, D. P. (2021). Fe2O3/MCM-41 as catalysts for methyl orange degradation by Fenton-like reactions. Environmental Progress & Sustainable Energy, 40(2), e13507. https://doi.org/https://doi.org/10.1002/ep.13507
Sobhanardakani, S., Jafari, A., Zandipak, R., & Meidanchi, A. (2018). Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Safety and Environmental Protection, 120(October), 348–357. https://doi.org/10.1016/j.psep.2018.10.002
Stoia, M., Pəcurariu, C., Istratie, R., & Nižňanský, D. (2015). Solvothermal synthesis of magnetic FexOy/C nanocomposites used as adsorbents for the removal of methylene blue from wastewater. Journal of Thermal Analysis and Calorimetry, 121(3), 989–1001. https://doi.org/10.1007/s10973-015-4641-x
Tai, H., Yang, Y., Liu, S., & Li, D. (2012). A Review of Measurement Methods of Dissolved Oxygen in Water BT - Computer and Computing Technologies in Agriculture V. In D. Li & Y. Chen (Eds.) (pp. 569–576). Berlin, Heidelberg: Springer Berlin Heidelberg.
Wu, M.-S., Ou, Y.-H., & Lin, Y.-P. (2010). Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries. Electrochimica Acta, 55(9), 3240–3244. https://doi.org/https://doi.org/10.1016/j.electacta.2009.12.100
Wu, Z., Li, W., Webley, P. A., & Zhao, D. (2012). General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Advanced Materials, 24(4), 485–491. https://doi.org/10.1002/adma.201103789
Yang, H., Liang, J., Zhang, L., & Liang, Z. (2016). Electrochemical oxidation degradation of methyl orange wastewater by Nb/PbO2 electrode. International Journal of Electrochemical Science, 11(2), 1121–1134.
Yu, F., Zhou, M., & Yu, X. (2015). Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochimica Acta, 163, 182–189. https://doi.org/https://doi.org/10.1016/j.electacta.2015.02.166
Yu, X., Zhou, M., Hu, Y., Groenen Serrano, K., & Yu, F. (2014). Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environmental Science and Pollution Research, 21(14), 8417–8431. https://doi.org/10.1007/s11356-014-2820-0
Zhou, L., Zhou, M., Hu, Z., Bi, Z., & Serrano, K. G. (2014). Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochimica Acta, 140, 376–383. https://doi.org/10.1016/j.electacta.2014.04.090
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Widya Ernayati Kosimaningrum, Heri Heriyanto, Meri Yulvianti, Alia Badra Pitaloka, Muhammad Raja Najahtama, Muhammad Aditya Wibisana, Yulis Sutianingsih
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.