The pH-electrodeposition-dependant of Iron Oxide Toward The Physicochemical Characteristics and Electrochemical Performance in Biorefractory Pollutant Degradation

Authors

  • Widya Ernayati Kosimaningrum Universitas Sultan Ageng Tirtayasa
  • Heri Heriyanto Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia
  • Meri Yulvianti
  • Alia Badra Pitaloka
  • Muhammad Raja Najahtama
  • Muhammad Aditya Wibisana
  • Yulis Sutianingsih

DOI:

https://doi.org/10.21771/jrtppi.2023.v14.no1.p8-18

Keywords:

electrodeposition, iron oxide, nanoparticles, biorefractory pollutant, electrochemical degradation

Abstract

Electrodeposition of the iron oxide (FexOy) nanoparticles on the graphite felt was prepared from a mixture of iron (II) and iron (III) precursor solution with various pHs (2, 7, and 10) by applying a constant current (galvanostatic) of 0.1 A for 30 minutes. Each resulting sample was coded GF/FexOy -2, GF/FexOy -7, and GF/FexOy -10, respectively. Graphite felt without modification, Raw-GF, was used as control. The mass of iron oxide (FexOy) deposited ranged from 0.02 to 0.03 grams. The product characterisation using a Scanning Electron Microscope (SEM) showed the distribution of 500 nm particles on the surface of the graphite felt for the GF/FexOy -2 sample. In comparison, the distribution of larger particles (1 – 2 μm) was observed in the samples of GF/FexOy -7 and GF/FexOy -10, respectively. Spectrum resulting from an X-ray Diffraction Spectroscopy (XRD) showed the formation of iron oxides (FexOy) such as magnetite (Fe3O4), haematite (Fe2O3), goethite (FeOOH), and lepidocrocite (FeO(OH)). Fourier Transform Infra-Red (FTIR) spectrum also confirmed the presence of Fe2O3 in the GF/FexOy -2 sample, Fe3O4 in the GF/FexOy -7 and GF/FexOy -10 samples, and FeOOH in all three samples. Applying the iron oxide modified graphite felt in the electro-Fenton approach process without aeration showed that it can degrade bio-refractory pollutants, such as methyl orange. The observed degradations of methyl orange were a decrease in the colour intensity up to 81.37% and a decrease in the COD up to 49.85%.

References

Aghazadeh, M. (2019). Electrochemical Synthesis of Dextran-and Polyethyleneimine-Coated Superparamagnetic Iron Oxide Nanoparticles and Investigation of their Physico-chemical Characters. ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY, 11(3), 362–372.

Aghazadeh, M., & Ganjali, M. R. (2018). Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization. Journal of Materials Science, 53(1), 295–308. https://doi.org/10.1007/s10853-017-1514-7

Baig, S., & Liechti, P. A. (2001). Ozone treatment for biorefractory COD removal. Water Science and Technology, 43(2), 197–204. https://doi.org/10.2166/wst.2001.0090

Barrera-Díaz, C., Linares-Hernández, I., Roa-Morales, G., Bilyeu, B., & Balderas-Hernández, P. (2009). Removal of Biorefractory Compounds in Industrial Wastewater by Chemical and Electrochemical Pretreatments. Industrial & Engineering Chemistry Research, 48(3), 1253–1258. https://doi.org/10.1021/ie800560n

Ben Hafaiedh, N., Fourcade, F., Bellakhal, N., & Amrane, A. (2020). Iron oxide nanoparticles as heterogeneous electro-Fenton catalysts for the removal of AR18 azo dye. Environmental Technology, 41(16), 2146–2153. https://doi.org/10.1080/09593330.2018.1557258

Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690

Fard, G. C., Mirjalili, M., & Najafi, F. (2018). Preparation of nano-cellulose/Α-Fe2O3 hybrid nanofiber for the cationic dyes removal: Optimization characterization, kinetic, isotherm and error analysis. Bulgarian Chemical Communications, 50(August), 251–261.

Ganiyu, S. O., Huong Le, T. X., Bechelany, M., Oturan, N., Papirio, S., Esposito, G., … Oturan, M. A. (2018). Electrochemical mineralization of sulfamethoxazole over wide pH range using FeIIFeIII LDH modified carbon felt cathode: Degradation pathway, toxicity and reusability of the modified cathode. Chemical Engineering Journal, 350, 844–855. https://doi.org/https://doi.org/10.1016/j.cej.2018.04.141

Ghernaout, D., Ghernaout, B., Boucherit, A., Naceur, M. W., Khelifa, A., & Kellil, A. (2009). Study on mechanism of electrocoagulation with iron electrodes in idealised conditions and electrocoagulation of humic acids solution in batch using aluminium electrodes. Desalination and Water Treatment, 8(1–3), 91–99. https://doi.org/10.5004/dwt.2009.668

Guivarch, E., Trevin, S., Lahitte, C., & Oturan, M. A. (2003). Degradation of azo dyes in water by Electro-Fenton process. Environmental Chemistry Letters, 1(1), 38–44. https://doi.org/10.1007/s10311-002-0017-0

Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45(6), 2207–2212. https://doi.org/https://doi.org/10.1016/j.watres.2011.01.012

Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., & Chen, M. (2015). Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0132067

Huiqun, C., Meifang, Z., & Yaogang, L. (2006). Decoration of carbon nanotubes with iron oxide. Journal of Solid State Chemistry, 179(4), 1208–1213. https://doi.org/https://doi.org/10.1016/j.jssc.2005.12.040

Huong Le, T. X., Bechelany, M., & Cretin, M. (2017). Carbon felt based-electrodes for energy and environmental applications: A review. Carbon, 122, 564–591. https://doi.org/https://doi.org/10.1016/j.carbon.2017.06.078

Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179. https://doi.org/https://doi.org/10.1016/j.crgsc.2021.100179

Jiang, H., Sun, Y., Feng, J., & Wang, J. (2016). Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles. Water Science and Technology, 74(5), 1116–1126. https://doi.org/10.2166/wst.2016.300

Kgatle, M., Sikhwivhilu, K., Ndlovu, G., & Moloto, N. (2021). Degradation Kinetics of Methyl Orange Dye in Water Using. Catalysts, 11, 428.

Koo, K. N., Ismail, A. F., Othman, M. H. D., Rahman, M. A., & Sheng, T. Z. (2019). Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review. Malaysian Journal of Fundamental and Applied Sciences, 15(1), 23–31.

Kosimaningrum, W. E., Le, T. X. H., Holade, Y., Bechelany, M., Tingry, S., Buchari, B., … Cretin, M. (2017). Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis. ACS Applied Materials & Interfaces, 9(27), 22476–22489. https://doi.org/10.1021/acsami.7b04651

Le, T. X. H., Bechelany, M., Lacour, S., Oturan, N., Oturan, M. A., & Cretin, M. (2015). High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon, 94, 1003–1011. https://doi.org/10.1016/j.carbon.2015.07.086

Le, T. X. H., Cowan, M. G., Drobek, M., Bechelany, M., Julbe, A., & Cretin, M. (2019). Fe-nanoporous carbon derived from MIL-53(Fe): A heterogeneous catalyst for mineralization of organic pollutants. Nanomaterials, 9(4), 1–11. https://doi.org/10.3390/nano9040641

Lian, T., Huang, C., Liang, F., Li, X., & Xi, J. (2019). Simultaneously Providing Iron Source toward Electro-Fenton Process and Enhancing Hydrogen Peroxide Production via a Fe3O4 Nanoparticles Embedded Graphite Felt Electrode. ACS Applied Materials & Interfaces, 11(49), 45692–45701. https://doi.org/10.1021/acsami.9b16236

Liu, K., Yu, J. C.-C., Dong, H., Wu, J. C. S., & Hoffmann, M. R. (2018). Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode. Environmental Science & Technology, 52(21), 12667–12674. https://doi.org/10.1021/acs.est.8b03916

Liu, W., Howell, J. A., Arnot, T. C., & Scott, J. A. (2001). A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics: application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt. Journal of Membrane Science, 181(1), 127–140. https://doi.org/https://doi.org/10.1016/S0376-7388(00)00496-8

Martinez, L., Leinen, D., Martín, F., Gabas, M., Ramos-Barrado, J. R., Quagliata, E., & Dalchiele, E. A. (2007). Electrochemical Growth of Diverse Iron Oxide (Fe[sub 3]O[sub 4], α-FeOOH, and γ-FeOOH) Thin Films by Electrodeposition Potential Tuning. Journal of The Electrochemical Society, 154(3), D126. https://doi.org/10.1149/1.2424416

Miao, J., Zhu, H., Tang, Y., Chen, Y., & Wan, P. (2014). Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chemical Engineering Journal, 250, 312–318. https://doi.org/https://doi.org/10.1016/j.cej.2014.03.043

Parshetti, G. K., Telke, A. A., Kalyani, D. C., & Govindwar, S. P. (2010). Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials, 176(1–3), 503–509. https://doi.org/10.1016/j.jhazmat.2009.11.058

Petrov, D. A., Lin, C. R., Ivantsov, R. D., Ovchinnikov, S. G., Zharkov, S. M., Yurkin, G. Y., … Lyubutin, I. S. (2020). Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag. Nanotechnology, 31(39). https://doi.org/10.1088/1361-6528/ab9af2

Prasetyo, I., Akbar, F., Prabandari, A. W., & Ariyanto, T. (2019). Fenton Oxidation using Easily Recoverable Catalyst of Magnetite (Fe3O4) as an Efficient Approach to Treatment of Rhodamine B Dyeing Effluent in Traditional Fabrics Industry. ASEAN Journal on Science and Technology for Development, 36(3), 103–108. https://doi.org/10.29037/ajstd.592

Raghu, M. S., Yogesh Kumar, K., Prashanth, M. K., Prasanna, B. P., Vinuth, R., & Pradeep Kumar, C. B. (2017). Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. Journal of Water Process Engineering, 17(March), 22–31. https://doi.org/10.1016/j.jwpe.2017.03.001

Rajoriya, S., Carpenter, J., Saharan, V. K., & Pandit, A. B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Reviews in Chemical Engineering, 32(4), 379–411. https://doi.org/10.1515/revce-2015-0075

Sidney Santana, C., Freire Bonfim, D. P., da Cruz, I. H., da Silva Batista, M., & Fabiano, D. P. (2021). Fe2O3/MCM-41 as catalysts for methyl orange degradation by Fenton-like reactions. Environmental Progress & Sustainable Energy, 40(2), e13507. https://doi.org/https://doi.org/10.1002/ep.13507

Sobhanardakani, S., Jafari, A., Zandipak, R., & Meidanchi, A. (2018). Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Safety and Environmental Protection, 120(October), 348–357. https://doi.org/10.1016/j.psep.2018.10.002

Stoia, M., Pəcurariu, C., Istratie, R., & Nižňanský, D. (2015). Solvothermal synthesis of magnetic FexOy/C nanocomposites used as adsorbents for the removal of methylene blue from wastewater. Journal of Thermal Analysis and Calorimetry, 121(3), 989–1001. https://doi.org/10.1007/s10973-015-4641-x

Tai, H., Yang, Y., Liu, S., & Li, D. (2012). A Review of Measurement Methods of Dissolved Oxygen in Water BT - Computer and Computing Technologies in Agriculture V. In D. Li & Y. Chen (Eds.) (pp. 569–576). Berlin, Heidelberg: Springer Berlin Heidelberg.

Wu, M.-S., Ou, Y.-H., & Lin, Y.-P. (2010). Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries. Electrochimica Acta, 55(9), 3240–3244. https://doi.org/https://doi.org/10.1016/j.electacta.2009.12.100

Wu, Z., Li, W., Webley, P. A., & Zhao, D. (2012). General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Advanced Materials, 24(4), 485–491. https://doi.org/10.1002/adma.201103789

Yang, H., Liang, J., Zhang, L., & Liang, Z. (2016). Electrochemical oxidation degradation of methyl orange wastewater by Nb/PbO2 electrode. International Journal of Electrochemical Science, 11(2), 1121–1134.

Yu, F., Zhou, M., & Yu, X. (2015). Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochimica Acta, 163, 182–189. https://doi.org/https://doi.org/10.1016/j.electacta.2015.02.166

Yu, X., Zhou, M., Hu, Y., Groenen Serrano, K., & Yu, F. (2014). Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environmental Science and Pollution Research, 21(14), 8417–8431. https://doi.org/10.1007/s11356-014-2820-0

Zhou, L., Zhou, M., Hu, Z., Bi, Z., & Serrano, K. G. (2014). Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochimica Acta, 140, 376–383. https://doi.org/10.1016/j.electacta.2014.04.090

Downloads

Published

2023-05-02

How to Cite

Kosimaningrum, W. E., Heriyanto, H., Yulvianti, M., Pitaloka, A. B., Najahtama, M. R., Wibisana, M. A., & Sutianingsih, Y. (2023). The pH-electrodeposition-dependant of Iron Oxide Toward The Physicochemical Characteristics and Electrochemical Performance in Biorefractory Pollutant Degradation. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 14(1), 8–18. https://doi.org/10.21771/jrtppi.2023.v14.no1.p8-18

Issue

Section

Articles