Evaluation of Diesel Engine Performance Using Biodiesel from Cooking Oil Waste (WCO)

Authors

  • Suardi Suardi Institut Teknologi Kalimantan
  • Wira Setiawan Institut Teknologi Kalimantan
  • Andi Mursid Nugraha
  • Alamsyah Alamsyah Institut Teknologi Kalimantan
  • Rodlian Jamal Ikhwani Institut Teknologi Kalimantan

DOI:

https://doi.org/10.21771/jrtppi.2023.v14.no1.p29-39

Keywords:

Biodiesel, waste cooking oil (WCO), Diesel Engine, Engine Performance, fuel temperature

Abstract

The increasing use of fossil fuels will cause the world's oil reserves to be depleted. In this case, it is necessary to increase the use of alternative renewable fuels, one of which is biodiesel waste cooking oil (WCO). The method used is an experimental test with a mixture of used cooking oil biodiesel and fuel. Before testing, the temperature of each fuel is increased to determine the effect of temperature on the density and viscosity values. The highest density value is found in B50 fuel at 26 °C, with a density of 0.854 gr/ml, while the lowest density is found in diesel fuel at 60 °C, with a density of 0.822 gr/ml. The highest viscosity value is found in B50 fuel at 26 °C and 60 °C, which is 3.26 cSt. After that, testing was carried out on a diesel engine, which produced the highest thermal efficiency value of 21.16% on B50 fuel with a temperature of 60 °C at 1000 rpm rotation and a load of 4000 watts. The lowest thermal efficiency of 6.43% was found in B50 fuel with a temperature of 26 °C at 800 rpm and a load of 1000 watts. The lowest consumption was found in B30 with a temperature of 60 °C at 1200 rpm, which was 420.78 gr/kWh. From the results of the tests that have been carried out, it can be concluded that the lower the density and viscosity of the fuel, the better the performance of the diesel engine on average. High temperatures effectively make the engine performance value better than normal temperatures (26 °C), and the performance of diesel engines is better with WCO fuel, especially in SFC.

References

Bernard Freedman, R. O. B. and E. H. P. (1986). Transesterification Kinetics of Soybean Oil. JAOCS, 63(10), 1375–1380. https://doi.org/10.1016/B978-1-893997-62-2.50006-1

Choi, J. Y., Unnikrishnan, U., Hwang, W. S., Jeong, S. M., Han, S. H., Kim, K. H., & Yang, V. (2022). Effect of fuel temperature on flame characteristics of supersonic turbulent combustion. Fuel, 329(March), 125310. https://doi.org/10.1016/j.fuel.2022.125310

Direktorat Jenderal Energi Baru Terbarukan dan Konservasi Energi - Kementerian ESDM. (n.d.). Waste cooking oil: A Promising Energy Business Potential. Retrieved August 1, 2022, from https://ebtke.esdm.go.id/post/2020/12/07/2725/minyak.jelantah.sebuah.potensi.bisnis.energi.yang.menjanjikan

Duhovnik, J. (2008). Journal of Mechanical Engineering: Editorial. Strojniski Vestnik/Journal of Mechanical Engineering, 54(1), 39–46.

Fathallah, A. Z. M., Iswantoro, A., Semin, S., Cahyono, B., Ariana, I. M., & Pratama, A. R. B. (2022). Analysis of The Injection Pressure Effect on Single Cylinder Diesel Engine Power with Diesel Fuel-Methanol Blend. International Journal of Marine Engineering Innovation and Research, 7(2), 50–58. https://doi.org/10.12962/j25481479.v7i2.12884

Fil, H. E., & Akansu, S. O. (2022). The impact of modified injection timing methods on performance , combustion and pollution emissions in CI engine using diesel-gasoline mixtures. Fuel, 328(April), 125268. https://doi.org/10.1016/j.fuel.2022.125268

Hosseinzadeh-Bandbafha, H., Nizami, A. S., Kalogirou, S. A., Gupta, V. K., Park, Y. K., Fallahi, A., … Tabatabaei, M. (2022). Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews, 161(March), 112411. https://doi.org/10.1016/j.rser.2022.112411

Indonesia, R. Keputusan Direktur Jenderal Minyak dan Gas Nomor 146.K/10/DJM/2020 Tentang Standar dan Mutu (Spesifikasi) Bahan Bakar Jenis Minyak Solar Yang Dipasarkan Di Dalam Negeri (2020). Retrieved from https://migas.esdm.go.id/uploads/regulasi/regulasi-kkkl/2020/146.K-10-DJM-2020.pdf

Kemenperin: Average Distribution of Bulk Cooking Oil Increased by 800 Tons / Day in March – April 2022. (n.d.). Retrieved August 1, 2022, from https://www.kemenperin.go.id/artikel/23239/Rata-rata-Penyaluran-Minyak-Goreng-Curah-Bertambah-Sebesar-800-TonHari-di

Kementerian ESDM dan Stakeholder Siap Terapkan Standar Euro 4 pada April 2022 | Situs Ditjen Migas. (2021). Retrieved October 18, 2022, from https://migas.esdm.go.id/post/read/kementerian-esdm-dan-stakeholder-siap-terapkan-standar-euro-4-pada-april-2022

Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J., & Hertz, P. B. (2001). Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology, 80(1), 53–62. https://doi.org/10.1016/S0960-8524(01)00051-7

Palm Oil Production by Country in 1000 MT - Country Rankings. (n.d.). Retrieved August 1, 2022, from https://www.indexmundi.com/agriculture/?commodity=palm-oil

Panda, K., & Ramesh, A. (2021). Diesel injection strategies for reducing emissions and enhancing the performance of a methanol based dual fuel stationary engine. Fuel, 289(December 2020), 119809. https://doi.org/10.1016/j.fuel.2020.119809

Prasetyo, J., Teknologi, P., Energi, S., & Unpam, J. I. T. K. (2018). STUDI PEMANFAATAN MINYAK JELANTAH SEBAGAI BAHAN BAKU PEMBUATAN BIODIESEL Studi On The Utilization of Used Oil As Raw Material For Biodiesel PENDAHULUAN Sumber energi minyak bumi saat ini mulai menipis seiring meningkatnya pembangunan dan penggunaannya di , 2(2).

Suardi, Purwanto, M., Kyaw, A. Y., Setiawan, W., & Pawara, M. U. (2022). Biodiesel Production from POME ( Palm Oil Mill Effluent ) and Effects on Diesel Engine Perfor- mance. International Journal of Marine Engineering Innovation and Research, 7(4), 292–299. https://doi.org/10.12962/j25481479.v7i4.14492

Suardi, S. S. (2019). Analisa Penggunaan Biodiesel Minyak Jagung Sebagai Campuran Bahan Bakar Alternatif Mesin Diesel. Inovtek Polbeng, 9(2), 280. https://doi.org/10.35314/ip.v9i2.1041

Suzihaque, M. U. H., Alwi, H., Kalthum Ibrahim, U., Abdullah, S., & Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings, 63, S490–S495. https://doi.org/10.1016/j.matpr.2022.04.527

TF Series|Horizontal Water-cooled Diesel Engines|Industrial Engine|YANMAR Indonesia. (n.d.). Retrieved August 1, 2022, from https://www.yanmar.com/en_id/engine/products/diesel/h_watercooled/tfseries/

Transesterification - SRS BiodieselSRS Biodiesel. (2022). Retrieved October 18, 2022, from https://www.srsbiodiesel.com/technologies/transesterification/

Tschoeke, K. M. H. (2006). Handbook of Diesel Engines. Springer Heidelberg Dordrecht London New York (Vol. 1999).

waste cocking oil - Search | ScienceDirect.com. (2022). Retrieved October 19, 2022, from https://www.sciencedirect.com/search?qs=waste cocking oil

waste cooking oil - Google Scholar. (2022). Retrieved October 19, 2022, from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=waste+cooking+oil&oq=waste+co

Downloads

Published

2023-05-02

How to Cite

Suardi, S., Setiawan, W., Nugraha, A. M., Alamsyah, A., & Ikhwani, R. J. (2023). Evaluation of Diesel Engine Performance Using Biodiesel from Cooking Oil Waste (WCO). Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 14(1), 29–39. https://doi.org/10.21771/jrtppi.2023.v14.no1.p29-39

Issue

Section

Articles