Utilization of Peroxide Bleached Sugar Palm (Arenga pinnata) Fibre Waste into Cellulose Nano Crystal

Authors

  • Dwi Joko Prasetyo Research Center for Food Technology and Processing, National Research and Innovation Agency
  • Nur Evita Fitriana Department of Chemistry, Universitas Negeri Semarang, Central Java, Indonesia
  • Wahyu Anggo Rizal Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Hernawan Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Tri Hadi Jatmiko Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Diah Pratiwi Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Anggita Sari Praharasti Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Roni Maryana Research Center for Advance Chemistry, National Research and Innovation Agency, Banten, Indonesia
  • Muslih Anwar Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Ria Suryani Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Andri Suwanto Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Satriyo Krido Wahono Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Crescentiana Dewi Poeloengasih Research Center for Food Technology and Processes, National Research and Innovation Agency, Yogyakarta, Indonesia

DOI:

https://doi.org/10.21771/jrtppi.2022.v13.no1.p35-42

Keywords:

cellulose nanocrystal, peroxide bleached, sugar palm fibre

Abstract

Sugar palm (Arenga pinnata) fibre (SPF) waste is a side product of sugar palm starch production and needs to be processed to avoid environmental pollution. Since the SPF has high cellulose content, it can be beneficial if it is valorized into high-value products such as cellulose nanocrystal (CNC). The CNC production from SPF was initiated by cellulose production by using an environmentally friendly peroxide bleaching as elementary chlorine free bleaching method. The CNC production was conducted via sulfuric acid hydrolysis at a temperature of 40°C, solid/liquid ratio of 1:10, and hydrolysis time of 45, 60, 75, and 90 minutes. The same functional groups were observed in all CNC samples, including the appearance of the ester sulfate group. The decrease in yield and crystallinity index (CrI) as the hydrolysis time was observed. These phenomena were caused by the degradation of the crystalline structure of cellulose and the formation of the ester sulfate group. The measurement of CNC diameter size was carried out by using the scanning electron microscopy (SEM) technique. The CNC diameter was below 100 nm which indicated the nanoparticle formation was observed at CNC produced at hydrolysis times of 75 and 90 minutes. In conclusion, CNC production was successfully produced from peroxide bleached SPF which is more environmentally friendly than the conventional method using chlorite bleached cellulose. Furthermore, it is needed to optimize the production of SPF CNC in further research.

References

Chen, Y. W., Lee, H. V., & Abd Hamid, S. B. (2017). Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach. Carbohydrate Polymers, 157, 1511–1524. https://doi.org/10.1016/j.carbpol.2016.11.030

Cowie, J., Bilek, E. M. M. T., Wegner, T. H., & Shatkin, J. A. (2014). Market projections of cellulose nanomaterial-enabled products - part 2: Volume estimates. Tappi Journal, 13(6), 57–69. Retrieved from https://www.fs.usda.gov/treesearch/pubs/46175%0Ahttp://www.scopus.com/inward/record.url?eid=2-s2.0-84902114643&partnerID=tZOtx3y1

Dayatmo, D., & HS, H. (2015). Pembuatan Bioetanol dari Limbah Ampas Pati Aren dengan Metode Hidrolisis Enzimatis menggunakan Enzim Ligninolitik dari Jamur Pelapuk Kayu. Konversi, 4(2), 43–52.

de Assis, C. A., Houtman, C., Phillips, R., Bilek, E. M. (Ted), Rojas, O. J., Pal, L., … Gonzalez, R. (2017). Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of CNC Manufacturing. Biofuels, Bioproducts and Biorefining, 11(4), 682–700. https://doi.org/10.1002/bbb

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., … Pothan, L. A. (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075–1090. https://doi.org/10.1007/s10570-015-0554-x

Ditzel, F. I., Prestes, E., Carvalho, B. M., Demiate, I. M., & Pinheiro, L. A. (2017). Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers, 157, 1577–1585. https://doi.org/10.1016/j.carbpol.2016.11.036

Firdayati, M., & Handajani, M. (2005). Studi Karakteristik Dasar Limbah Industri Tepung Aren. Jurnal Infrasruktur Dan Lingkungan Binaan, 1(2), 22–29.

Fitriana, N. E., Suwanto, A., Jatmiko, T. H., Mursiti, S., & Prasetyo, D. J. (2020). Cellulose extraction from sugar palm (Arenga pinnata) fibre by alkaline and peroxide treatments. IOP Conference Series: Earth and Environmental Science, 462(1), 012053. https://doi.org/10.1088/1755-1315/462/1/012053

Haafiz, M. K. M., Hassan, A., Zakaria, Z., & Inuwa, I. M. (2014). Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 103(1), 119–125. https://doi.org/10.1016/j.carbpol.2013.11.055

Ho, M. C., Ong, V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review. Renewable and Sustainable Energy Reviews, 112(April), 75–86. https://doi.org/10.1016/j.rser.2019.04.082

Huzaifah, M. R. M., Sapuan, S. M., Leman, Z., Ishak, M. R., & Maleque, M. A. (2017). A review of sugar palm (Arenga pinnata): Application, fibre characterisation and composites. Multidiscipline Modeling in Materials and Structures, 13(4), 678–698. https://doi.org/10.1108/MMMS-12-2016-0064

Ilyas, R. A., Sapuan, S. M., Atikah, M. S. N., Asyraf, M. R. M., Rafiqah, S. A., Aisyah, H. A., … Norrrahim, M. N. F. (2021). Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Textile Research Journal, 91(1–2), 152–167. https://doi.org/10.1177/0040517520932393

Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181(June 2017), 1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045

Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 202, 186–202. https://doi.org/10.1016/j.carbpol.2018.09.002

Jiang, F., & Hsieh, Y.-L. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 95(1), 32–40. https://doi.org/10.1016/j.carbpol.2013.02.022

Jiang, M., Zhao, M., Zhou, Z., Huang, T., Chen, X., & Wang, Y. (2011). Isolation of cellulose with ionic liquid from steam exploded rice straw. Industrial Crops and Products, 33(3), 734–738. https://doi.org/10.1016/j.indcrop.2011.01.015

Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J., & Chaabouni, S. E. (2016). Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products, 87, 287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., … Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2(2), 197–213. https://doi.org/10.1007/s40684-015-0024-9

Lempang, M. (2012). Pohon Aren dan Manfaat Produksinya. Info Teknis EBONI, 9(1), 37–54.

Lu, P., & Hsieh, Y. Lo. (2010). Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2), 329–336. https://doi.org/10.1016/j.carbpol.2010.04.073

Lu, P., & Hsieh, Y. Lo. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1), 564–573. https://doi.org/10.1016/j.carbpol.2011.08.022

Lubis, M., Harahap, M. B., Ginting, M. H. S., Sartika, M., & Azmi, H. (2018). Production of bioplastic from avocado seed starch reinforced with microcrystalline cellulose from sugar palm fibers. Journal of Engineering Science and Technology, 13(2), 381–393.

Meng, C., Cao, G. P., Yan, Y. Z., Zhao, E. Y., Hou, L. Y., & Shi, H. Y. (2017). Synthesis of cellulose acetate propionate with controllable contents and distributions of acetyl and propionyl in the C2, C3 and C6 positions. Reaction Kinetics, Mechanisms and Catalysis, 122(2), 1031–1047. https://doi.org/10.1007/s11144-017-1260-5

Musa, L. M., Sulaiman, S., Ibrahim, I., Nur Ramadhan, L. O. A., & A. Kadir, L. (2021). Batu Bata Ringan Dengan Filler Paduan Serat Ijuk Aren dan Sekam Padi Terkarbonasi. Jurnal Aplikasi Teknik Sipil, 19(3), 345. https://doi.org/10.12962/j2579-891x.v19i3.7035

Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: an under-utilized renewable food biomass with great potential. Journal of Food Science and Technology, 51(12), 3527–3545. https://doi.org/10.1007/s13197-012-0861-2

Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 10. https://doi.org/10.1080/02773818608085213

Perumal, A. B., Nambiar, R. B., Moses, J. A., & Anandharamakrishnan, C. (2022). Nanocellulose: Recent trends and applications in the food industry. Food Hydrocolloids, 127(January), 107484. https://doi.org/10.1016/j.foodhyd.2022.107484

Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004

Qasim, U., Ali, Z., Nazir, M. S., Ul Hassan, S., Rafiq, S., Jamil, F., … Saqib, S. (2020). Isolation of Cellulose from Wheat Straw Using Alkaline Hydrogen Peroxide and Acidified Sodium Chlorite Treatments: Comparison of Yield and Properties. Advances in Polymer Technology, 2020, 9765950. https://doi.org/10.1155/2020/9765950

Rosales-Calderon, O., Pereira, B., & Arantes, V. (2021). Economic assessment of the conversion of bleached eucalyptus Kraft pulp into cellulose nanocrystals in a stand-alone facility via acid and enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 15(6), 1775–1788. https://doi.org/10.1002/bbb.2277

Saputro, A., Verawati, I., Ramahdita, G., & Chalid, M. (2017). Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis. IOP Conference Series: Materials Science and Engineering, 223(1). https://doi.org/10.1088/1757-899X/223/1/012042

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003

Shak, K. P. Y., Pang, Y. L., & Mah, S. K. (2018). Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein Journal of Nanotechnology, 9(1), 2479–2498. https://doi.org/10.3762/bjnano.9.232

Shatkin, J. A., Wegner, T. H., Bilek, E. M., & Cowie, J. (2014). Market projections of cellulose nanomaterial-enabled products -Part 1: Applications. Tappi Journal. https://doi.org/10.32964/tj13.5.9

Tang, L., Huang, B., Lu, Q., Wang, S., Ou, W., Lin, W., & Chen, X. (2013). Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresource Technology, 127, 100–105. https://doi.org/10.1016/j.biortech.2012.09.133

Teixeira, E. de M., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2011). Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 33(1), 63–66. https://doi.org/10.1016/j.indcrop.2010.08.009

Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., … Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

Wang, S., Lu, A., & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169–206. https://doi.org/10.1016/j.progpolymsci.2015.07.003

Wang, Z., Yao, Z. J., Zhou, J., & Zhang, Y. (2017). Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydrate Polymers, 157, 945–952. https://doi.org/10.1016/j.carbpol.2016.10.044

Xie, H., Du, H., Yang, X., & Si, C. (2018). Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018, 7923068. https://doi.org/10.1155/2018/7923068

Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z., & Yang, W. (2018). Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composites Science and Technology, 154(2018), 8–17. https://doi.org/10.1016/j.compscitech.2017.10.022

Zhao, G., Du, J., Chen, W., Pan, M., & Chen, D. (2019). Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose, 26(16), 8625–8643. https://doi.org/10.1007/s10570-019-02683-8

Zhao, T., Chen, Z., Lin, X., Ren, Z., Li, B., & Zhang, Y. (2018). Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydrate Polymers, 184(December 2017), 164–170. https://doi.org/10.1016/j.carbpol.2017.12.024

Downloads

Published

2022-06-27

How to Cite

Prasetyo, D. J., Fitriana, N. E., Rizal, W. A., Hernawan, Jatmiko, T. H. ., Pratiwi, D., Praharasti, A. S., Maryana, R., Anwar, M., Suryani, R., Suwanto, A., Wahono, S. K., & Poeloengasih, C. D. (2022). Utilization of Peroxide Bleached Sugar Palm (Arenga pinnata) Fibre Waste into Cellulose Nano Crystal. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 13(1), 35–42. https://doi.org/10.21771/jrtppi.2022.v13.no1.p35-42

Issue

Section

Articles