High Performance of Enzymatic Bioprocess for Production of Biomassed-based Bioethanol of Sago Palm Fiber Waste


  • Nani Harihastuti Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Rame Rame Balai Besar Teknologi Pencegahan Pencemaran Industri
  • Silvy Djayanti Balai Besar Teknologi Pencegahan Pencemaran Industri




high performance, bio-enzymatic, sago palm fiber waste, bioethanol


Biomass waste in the form of fiber dregs contains many components of lignocellulose and hemicellulose. Lignocellulose can be used to produce ethanol through enzymatic biotechnology processes. Sago palm fiber industry is one potential industry producing biomass waste in the form of solid waste of fiber dregs (about 30% from the weight of processed raw materials). Solid fiber waste contains crude fiber and lignocellulose compound consists of cellulose (35-50%), hemicellulose ( 20-35%) and lignin (12-20%). This study aimed to utilize solid waste of sago palm fiber as a raw material of bioethanol production through enzymatic biotechnology processes of delignification, saccharification and fermentation which was then purified by distillation process to get ethanol. Delignification, saccharification, and fermentation stages are conducted using Phanerochaete chrysosporus Mushroom, Trichoderma viride fungus, and saccharomyces cerevisiae, respectively and then purified by distillation process (one level) to produce ethanol. The process of saccharification and fermentation process were done in an integrated manner (addition of Trichoderma viride and yeast saccharomyces cereviceae fungi done simultaneously). The weight of raw materials of solid waste fiber treated was about 6 kgs. Alcohol content obtained was about ± 4% (distillation). No water, air, and soil pollution inflicted, more added value, and sustainable were the main benefits of biotech process or bioprocess.


Awg-Adeni, D. S., Bujang, K. B., Hassan, M. A., Abd-Aziz, S .2013. Recovery of glucose from residual starch of sago hampas for bioethanol production. BioMed Research International, 2013. https://doi.org/10. 1155/2013/935852

Dion, M., Parker, W. 2013. Steam Sterilization Principles. Pharmaceutical Engineering, 33(6), 1–8.

Hermiati, E., Mangunwidjaja, D., Sunarti, T. C., Suparno, O. 2010. Pemanfaatan biomassa lignoselulosa ampas tebu untuk produksi bioetanol, 29(4), 121–130.

Jin, X. 2015. Breaking Down Cellulose Enzymatic Hydrolysis of Cellulose Cost of Enzymatic Hydrolysis. Physics 240, 1(1), 1–2.

Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H., Kim, K. H. 2009. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 100(19), 4374–4380. https://doi.org/10.1016/j.biortech.2009.04.026

Louren, A. 2015. The influence of heartwood on kraft delignification of Eucalyptus globulus wood The influence of heartwood on kraft delignification of Eucalyptus globulus wood Ana Carina dos Santos Lourenço, (October).

Maki, M., Leung, K. T., Qin, W. 2013. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass Page 2 sur 8. International Journal of Biological Sciences, 5(5), 1–8. https://doi.org/10.7150/ijbs.5.500

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6),673–686.https://doi.org/10.1016/j.biortech. 2004.06.025

Mussatto, S. I., Dragone, G., Guimarães, P. M. R., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Teixeira, J. A. 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28(6), 817–830. https://doi.org/10.1016/j.biotechadv.2010.07.001

Nigam, P. S., & Singh, A. 2011. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003

P. F. H. Harmsen, W. H. 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Retrieved from http://www.researchgate.net/publication/254853217_Literature_review_of_physical_and_chemical_pretreatment_processes_for_lignocellulosic_biomass

Posts, Emerald Biology, A., Archi, B. 2016. Fuels for Biofuels part 5 : free cellulases and cellulose hydrolysis, 2–4.

Rame, Harihastuti Nani, D. S. 2016. Optimalisasi Proses Sakarifikasi untuk Produksi Bioethanol Dari Limbah Padat Industri Pati Aren Menggunakan Trichoderma viride Berbasis Enzim Selulase On Site. In Proceeding Semnas Hasil Hasil Penelitian Pasca Sarjana (pp. 153–157). FKM UNDIP

Rame, Harihastuti, N., Djayanti, S. 2017. Integration Of Fermentation Sacharification Bioprocess In Optimizing Of Bioetanol Based Of Biomass Starch Aren Lignoselulosa Solid Waste. Proceeding Seminar Nasional Teknologi Industri Hijau 2, 263–266.

Saritha, M., Arora, A., & Lata. 2012. Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian Journal of Microbiology, 52(2), 122–130. https://doi.org/10.1007/s12088-011-0199-x

PRESS.SNI 0492. 2008. SNI 0492:2008 Pulp dan kayu - Cara uji kadar lignin - Metode Klason.

SNI 2891. 1992. sni-01-2891-1992-cara-uji-makanan-dan-minuman.pdf.

Sun, Y., Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production : a review q. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

Walker, G., Stewart, G. 2016. Saccharomyces Cerevisiae in the Production of Fermented Beverages. Beverages, 2(4),30.https://doi.org/10.3390/beverages2040030

You, C., Percival Zhang, Y. H. 2017. Biomanufacturing by in vitro biosystems containing complex enzyme mixtures. Process Biochemistry, 52, 106–114. https://doi.org/10.1016/j.procbio.2016.09.025




How to Cite

Harihastuti, N., Rame, R., & Djayanti, S. (2020). High Performance of Enzymatic Bioprocess for Production of Biomassed-based Bioethanol of Sago Palm Fiber Waste. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 9(2), 37–45. https://doi.org/10.21771/jrtppi.2018.v9.no2.p37-45




Most read articles by the same author(s)