Hanny Vistanty, Rizal Awaluddin Malik


Continuous three-stage anaerobic reactors with recirculation system were employed to treat real tofu wastewater. The system consists of 3 reactors connected in series and effluent of the last reactor was partly returned as feed of the first reactor along with fresh wastewater. The recirculation system was conducted on four variations of recirculation ratio (RR)s of 0, 1.0, 1.3, and 1.5 to evaluate the influence of recirculation on stability and performance of anaerobic system. Results showed that recirculation improved the performance of anaerobic digestion. COD was fluctuated without recirculation and gradually decreased to 373 and 298 mg/L at RR 1.3 and 1.5, respectively. Likewise, pH value was dropped to 6.5 at RR 0, and started to increase to approximately 8.0 upon employing recirculation. In addition, the system also showed excellent toleration against rise in ammonia loading, with effluent ammonia approximately 4.678 mg/L. The findings showed that the system employed had excellent efficiency and stability in treating tofu wastewater. 


recirculation; anaerobic; tofu wastewater; COD; ammonia

Full Text:



Abbasi, U., Jin, W., Pervez, A., Bhatti, Z. A., Tariq, M., Shaheen, S., … Mahmood, Q. (2016). Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants. Bioresource Technology , 200 , 1–7. https://doi.org/10.1016/j.biortech.2015.09.088 Abdel-Shafy, H. I., & Mansour, M. S. M. (2014). Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egyptian Journal of Petroleum , 23 (4), 409–417. https://doi.org/10.1016/j.ejpe.2014.09.009 Belén, F., Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2012). One option for the management of wastewater from tofu production: Freeze concentration in a falling-film system. Journal of Food Engineering , 110 (3), 364–373. https://doi.org/10.1016/j.jfoodeng.2011.12.036

Cavinato, C., Bolzonella, D., Fatone, F., Cecchi, F., & Pavan, P. (2011). Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresource Technology , 102 (18), 8605–8611. https://doi.org/10.1016/j.biortech.2011.03.084 Chen, Y., Zhang, F., Wang, T., Shen, N., Yu, Z. W., & Zeng, R. J. (2016). Hydraulic retention time affects stable acetate production from tofu processing wastewater in extreme-thermophilic (70oC) mixed culture fermentation. Bioresource Technology , 216 , 722–728. https://doi.org/10.1016/j.biortech.2016.06.015 Domingues, R. F., Sanches, T., Silva, G. S., Bueno, B. E., Ribeiro, R., Kamimura, E. S., Tommaso, G. (2015). Effect of enzymatic pretreatment on the anaerobic digestion of milk fat for biogas production. Food Research International , 73 , 26–30. https://doi.org/10.1016/j.foodres.2015.03.027 E.W. Rice, R.B. Baird, A.D. Eaton, editors. (2017). Standard Methods for the Examination of Water and Wast ewater. 23rd ed.

American Public Health Association, Washingto, DC, USA . https://doi.org/ISBN 9780875532356 Li, C., Champagne, P., & Anderson, B. C. (2015). Enhanced biogas production from anaerobic codigestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified twostage thermophilic digester system with selected thermo-chemical pre-treatment. Renewable Energy , 83 , 474–482. https://doi.org/10.1016/j.renene.2015.04.055 Malik, R. A., Vistanty, H., Sartamtomo, Setianingsih, N. I., Crisnaningtyas, F., & Zen, N. (2016). Wastewater treatment of bakery industry using stripper-activated sludge system. Jurnal Riset Teknologi Pencegahan Pencemaran Industri , 7 (2), 89–98. Masse, L., Massé, D. I., & Kennedy, K. J. (2003). Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater.

H. Vistanty and R.A. Malik /Jurnal Teknologi Pencegahan Pencemaran Industri 10 (2019) 29-37

Process Biochemistry ,

(9), 1365–1372. https://doi.org/10.1016/S0032-9592(03)00020-7 Mottet, A., Steyer, J. P., Déléris, S., Vedrenne, F., Chauzy, J., & Carrère, H. (2009). Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochemical Engineering Journal , 46 (2), 169–175. https://doi.org/10.1016/j.bej.2009.05.003 Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., & Wicaksono, K. A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering , 21 . https://doi.org/10.1016/j.jwpe.2017.12.004 Mutombo, D. T. (2004). Internal circulation reactor: pushing the limits of anaerobic industrial effluents treatment technologies. Proceedings of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference, Cape Town, South A frica. , (May), 608– 616. Park, S., & Kim, M. (2015). Effect of ammonia on anaerobic degradation of amino acids. KSCE Journal of Civil Engineering , 1–8. https://doi.org/10.1007/s12205-015-0240-4 Ratanatamskul, C., & Siritiewsri, T. (2015). A compact onsite UASB–EGSB system for organic and suspended solid digestion and biogas recovery from department store wastewater. International Biodeterioration & Biodegradation , 2–8. https://doi.org/10.1016/j.ibiod.2015.04.002 Sprott, G. D., & Patel, G. B. (1986). Ammonia toxicity in pure cultures of methanogenic bacteria. Systematic and Applied Microbiology , 7 (2–3), 358–363. https://doi.org/10.1016/S0723-2020(86)80034-0 Vistanty, H., Mukimin, A., & Handayani, I. (2015). Pengolahan air limbah industri karton box dengan metode integrasi upflow anaerobic sludge bed reactor (UASB) dan elektrokoagulasi-flotasi. Journal Riset Teknologi Pencegahan Pencemaran Industri , 6 (1), 1–8.

Wang, J., Xu, W., Yan, J., & Yu, J. (2014). Study on the flow characteristics and the wastewater treatment performance in modified internal circulation reactor. Chemosphere , 117 (1), 631–637. https://doi.org/10.1016/j.chemosphere.2014.09.08 8 Wu, J., Zhang, J. B., Jiang, Y., Cao, Z. P., Poncin, S., & Li, H. Z. (2012). Impacts of hydrodynamic conditions on sludge digestion in internal circulation anaerobic digester. Process Biochemistry , 47 (11), 1627–1632. https://doi.org/10.1016/j.procbio.2012.03.009 Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry , 48 (5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012 Zeng, K., Hou, Y., & Cui, Y. (2011). The research of Square Internal Circulation Anaerobic Reactor to treatmenting soybean protein wastewater, 1329– 1332. Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology , 98 (4), 929–935. https://doi.org/10.1016/J.BIORTECH.2006.02.03 9 Zhang, Y., Ma, Y., Quan, X., Jing, Y., & Dai, S. (2009). Rapid startup of a hybrid UASB-AFF reactor using bi-circulation. Chemical Engineering Journal , 155 (1–2), 266–271. https://doi.org/10.1016/j.cej.2009.08.005 Zheng, G. H., Wang, L., & Kang, Z. H. (2010). Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides. Renewable Energy , 35 (12), 2910–2913. https://doi.org/10.1016/j.renene.2010.04.030 Zhu, H., Suzuki, T., Tsygankov, A. A., Asada, Y., & Miyake, J. (1999). Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen

H. Vistanty and R.A. Malik/Jurnal Teknologi Pencegahan Pencemaran Industri 10 (2019) 29-37 37

Energy ,

(4), 305–310. https://doi.org/10.1016/ S0360-3199(98)00081-0 Zuo, Z., Wu, S., Qi, X., & Dong, R. (2015). Performance enhancement of leaf vegetable waste in two-stage

anaerobic systems under high organic loading rate: Role of recirculation and hydraulic retention time. Applied Energy , 147 (17), 279–286. https://doi.org/10.1016/j.apenergy.2015.03.001

DOI: https://doi.org/10.21771/jrtppi.2019.v10.no1.p29-37

Article Metrics

Abstract view : 108 times
PDF - 26 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Research Journal of Industrial Pollution Prevention Technology (p-ISSN 2087-0965 | e-ISSN 2503-5010).
Powered by OJS, Theme design credited to Custom.Theme

Creative Commons License