Potential Activated Carbon of Theobroma cacao L. Shell for Pool Water Purification in Politeknik Negeri Padang

Authors

  • Yuli Yetri Politeknik Negeri Padang

DOI:

https://doi.org/10.21771/jrtppi.2021.v12.no1.p32-38

Keywords:

Adsorption; Pool water; Theobroma cacao L.; Activated carbon, adsorption, Theobroma cacao L, activated carbon

Abstract

Research has been carried out to improve the quality of the yellow pool water. The water is used as a source of clean water for the academics of the Politeknik Negeri Padang, so it needs to be improved in accordance with the quality standards of clean water, and is suitable for daily use. The adsorption process was carried out using activated carbon of Theobroma cacao L. shells which was carbonated at 400oC for 1 hour and activated with H3PO4. Characterization of functional groups using Frontier Transform Infra Red (FTIR), and morphology of surface  using Scanning Electron Microscopy (SEM). The quality of clean water standard analyzed is turbidity, Total Dissolved Solids (TDS), color, Total Suspended Solids (TSS), and Fe content. Functional group analysis exhibits that the activated carbon produced has a pattern of absorption with O-H, C-H, and C-O bond types. At the optimum condition of the activation process, a good adsorbent is absorbed in pool water purification at a flow rate of 5 mL/min with a mass of 2 grams. The analysis showed an efficiency decrease in turbidity value of 67%, Total Dissolved Solids (TDS) 71%, Color 97%, Total Suspended Solids (TSS) 86%, and Fe content 38%. Surface morphology of activated carbon showed the presence of pore cavities, and after the filtration process the cavities became saturated. This shows that there has been an absorption by activated carbon, so that the water becomes clear. Activated carbon of Theobroma cacao L.shell is very effective in the process of purifying pool water into clean water and fulfilling clean water standards, so it is suitable for  are used.

References

Arsad, E. (2010). Teknologi Pengolahan Dan Pemanfaatan Karbon Aktif Untuk Industri. Jurnal Riset Industri Hasil Hutan, 2(2), 43. https://doi.org/10.24111/jrihh.v2i2.1146

Budiono, A., Suhartana, & Gunawan. (2008). Pengaruh Aktivasi Arang Tempurung Kelapa dengan Asam Sulfat dan Asam Fosfat untuk Adsorpsi Fenol. E-Universitas Diponegoro, 4(1), 1–12.

Da̧browski, A., Podkościelny, P., Hubicki, Z., & Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon - A critical review. Chemosphere, 58(8), 1049–1070. https://doi.org/10.1016/j.chemosphere.2004.09.067

Edward Tandy, Ismail Fahmi Hasibuan, & Hamidah Harahap. (2012). Kemampuan Adsorben Limbah Lateks Karet Alam Terhadap Minyak Pelumas Dalam Air. Jurnal Teknik Kimia USU, 1(2), 34–38. https://doi.org/10.32734/jtk.v1i2.1416

Effendi & Hefni. (2003). Telaah Kualitas Air: Bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Yogyakarta. Penerbit: Kanisius.

France, E. De. (1991).血清及尿液特定蛋白检测在糖尿病肾病早期诊断中的意义, 6(4), 1380–1385.

Guo, J., Luo, Y., Lua, A. C., Chi, R. an, Chen, Y. lin, Bao, X. ting, & Xiang, S. xin. (2007). Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon, 45(2), 330–336. https://doi.org/10.1016/j.carbon.2006.09.016

Gupta, V. K., Sharma, S., Yadav, I. S., & Mohan, D. (1998). Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. Journal of Chemical Technology and Biotechnology, 71(2), 180–186. https://doi.org/10.1002/(SICI)1097-4660(199802)71:2<180::AID-JCTB798>3.0.CO;2-I

Hendra, D., & Darmawan, S., (2007). Sifat Arang Aktif dari Tempurung Kemiri. Jurnal Penelitian Hasil hutan, 25(4), 291-302.

Lu, W., & Chung, D. D. L. (2001). Preparation of conductive carbons with high surface area. Carbon, 39(1), 39–44.

https://doi.org/10.1016/S0008-6223(00)00077-4

Misran, E. (2009). Pemanfaatan kulit coklat dan kulit kopi sebagai adsorben ion Pb dalam larutan. Jurnal Sigma, 12(1), 1–7.

Purnamawati, H., & Utami, B. (2014). Pemanfaatan Limbah Kulit Buah Kakao (Theobroma cocoa L) Sebagai Adsorben Zat Warna Rhodamin B. Prosiding Seminar Nasional Fisika Dan Pendidikan Fisika (SNFPF), 5(1), 12.

Rahmadani, N., & Kurniawati, P. (2017). Sintesis dan Karakterisasi Karbon Teraktivasi Asam dan Basa Berbasis Mahkota Nanas. Prosiding Seminar Nasoinal Kimia Dan Pembelajarannya 2017, (November), 154–161.

Siti Munfiah, R. M. P. A. (2015). Kemampuan Karbon Aktif Tongkol Jagung dalam Menurunkan Kekeruhan Air. Medsains.

Surabaya, U. N., & Ketintang, J. (2013). Adsorpsi Pb 2+ oleh Arang Aktif Sabut Siwalan (Borassus flabellifer). Jurusan Kimia FMIPA, Fakultas Matematika dan Ilmu Pengetahuan Alam, 2(3), 82–87.

Surest, A. H., Kasih, J. A. F., & Wisanti, A. (2008). Pengaruh suhu, konsentrasi zat aktivator dan waktu aktivasi terhadap daya serap karbon aktif dari tempurung kemiri. Jurnal Teknik Kimia, 15(2), 18. Retrieved from http://jtk.unsri.ac.id/index.php/jtk/article/view/49/50

Wijaya.M, M., & Wiharto, M. (2017). Characterization of Cacao Fruit Skin for Active Carbon and Green Chemicals. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 2(1), 66. https://doi.org/10.20961/jkpk.v2i1.8520

Yetri, Y., Marantika, D. A., Alamsyah, T., Alif, M. F., & Zein, R. (2020). Contribution of Activated Carbon Based on Cacao Peels (Theobroma cacao L.) to Improve the Well Water Quality (COLOR, BOD, and COD). IOP Conference Series: Materials Science and Engineering, 846(1). https://doi.org/10.1088/1757-899X/846/1/012003

Published

2021-05-27

How to Cite

Yetri, Y. (2021). Potential Activated Carbon of Theobroma cacao L. Shell for Pool Water Purification in Politeknik Negeri Padang. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 12(1), 32–38. https://doi.org/10.21771/jrtppi.2021.v12.no1.p32-38

Issue

Section

Articles