Optimization of Injection Pressure and Fuel Temperature in a Diesel Engine Using Biodiesel B40
DOI:
https://doi.org/10.21771/jrtppi.2024.v15.no1.p1-9Keywords:
Biodiesel, Engine Performance, Fuel Temperature, Injection Pressure, Taguchi MethodAbstract
Biodiesel is an alternative fuel substitute for diesel engines produced from vegetable or animal oil through the transesterification reaction process between fatty acid, methanol, and catalyst. However, in its use in diesel engines, there is a decrease in engine performance. This is partly due to the higher viscosity value compared to diesel. Some ways to improve engine performance using biodiesel include adjusting injection pressure and increasing fuel inlet temperature. This study aimed to determine the effect of adding injection pressure and fuel inlet temperature on the performance of diesel engines using B40, such as power, thermal efficiency, sfc, and AFR. This study used a 1-cylinder diesel engine with constant rotation, using five variations of injection pressure 110-150 bar with a 10 bar interval, and five variations of fuel inlet temperature 30˚C-70˚C with a 10˚C intervals, and five loads from 5,000 kg/m2 to 25,000 kg/m2 with a 5000 kg/m2 interval. Testing and data processing were done using the Taguchi method. The results showed that the best diesel engine performance occurred at an injection pressure of 150 bar and a fuel temperature of 60˚C. The predicted performance value achieved under optimal conditions is a power of 2.9 kW at a load of 25000 kg/m2, thermal efficiency of 69.92% at a load of 25000 kg/m2, sfc of 3 x10-5 kg/kJ at a load of 25000 kg/m2, and AFR of 169.23 at a load of 5000 kg/m2. Temperature significantly affects engine performance power, sfc, thermal efficiency, and AFR compared to injection pressure.References
Ahmad, T., Danish, M., Kale, P., Geremew, B., Adeloju, S. B., Nizami, M., & Ayoub, M. (2019). Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, 139, 1272–1280. https://doi.org/10.1016/j.renene.2019.03.036
Alifuddin, T., Hakim, L., Ilminnafik, N., & ... (2020). Karakteristik Penyemprotan Campuran Diesel-Biodiesel Minyak Nyamplung dan Etanol Dengan Variasi Tekanan Injeksi. In … Workshop and National … (pp. 26–27). Retrieved from https://jurnal.polban.ac.id/proceeding/article/view/2034
Anis, S., Budiandono, G. N., Saputro, D. D., & Zainal, Z. A. (2018). Jurnal Bahan Alam Terbarukan Effect of Biodiesel / Diesel Blend and Temperature on 1-Cylinder Diesel Fuel Injection Pump Performance and Spray Pattern. https://doi.org/10.15294/jbat.v7i2.11891
Arumugam, A., & Ponnusami, V. (2019, February 1). Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renewable Energy. Elsevier Ltd. https://doi.org/10.1016/j.renene.2018.07.059
Asokan, M. A., Senthur Prabu, S., Bade, P. K. K., Nekkanti, V. M., & Gutta, S. S. G. (2019). Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy, 173, 883–892. https://doi.org/10.1016/j.energy.2019.02.075
Bondioli, P., Bella, L. Della, Rivolta, G., Faragò, S., Boschi, A., & Beretta, S. (2015). Study of biodiesel solid contaminants by means of Scan Electron Microscosopy (SEM). Rivista Italiana Delle Sostanze Grasse, 92(1), 11–16.
Buyukkaya, E. (2010). Effects of biodiesel on a di diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099–3105. https://doi.org/10.1016/j.fuel.2010.05.034
Czechlowski, M., Gracz, W., Marcinkowski, D., & Golimowski, W. (2020). The impact of the temperature of biodiesel from animal fats on nitrogen oxides emissions, 01001, 1–5.
Dabi, M., & Saha, U. K. (2019, December 1). Application potential of vegetable oils as alternative to diesel fuels in compression ignition engines: A review. Journal of the Energy Institute. Elsevier B.V. https://doi.org/10.1016/j.joei.2019.01.003
Ge, J. C., Kim, H. Y., Yoon, S. K., & Choi, N. J. (2020). Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel, 260. https://doi.org/10.1016/j.fuel.2019.116326
Geng, L. (2020). Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics, (July 2019), 312–326. https://doi.org/10.1002/ese3.429
Keera, S. T., El Sabagh, S. M., & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979–984. https://doi.org/10.1016/j.ejpe.2018.02.007
Komariah, L. N., Hadiah, F., Aprianjaya, F., & Nevriadi, F. (2018). Biodiesel effects on fuel filter; Assessment of clogging characteristics. Journal of Physics: Conference Series, 1095(1), 0–10. https://doi.org/10.1088/1742-6596/1095/1/012017
Kumar, S., Dinesha, P., & Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 185, 1163–1173. https://doi.org/10.1016/j.energy.2019.07.124
Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2020). The use of KOH/Clinoptilolite catalyst in pilot of microreactor for biodiesel production from waste cooking oil. Fuel, 263. https://doi.org/10.1016/j.fuel.2019.116659
Mohod, R, T., Bhansali, S, S., Moghe, S. M., & Kathoke, T. B. (2014). Preheating of Biodiesel for the Improvement of the Performance Characteristics of Di Engine : A Review. International Journal of Engineering Research and General Science, 2(4), 747–753. https://doi.org/10.12691/ajme-6-2-4
Plotnikov, S. A., Kartashevich, A. N., & Buzikov, S. V. (2018). Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine. In Journal of Physics: Conference Series (Vol. 944). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/944/1/012089
Pugazhendhi, A., Alagumalai, A., Mathimani, T., & Atabani, A. E. (2020). Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: An Indian perspective. Fuel, 273. https://doi.org/10.1016/j.fuel.2020.117725
Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A., & Negm, N. A. (2019). Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279, 224–231. https://doi.org/10.1016/j.molliq.2019.01.096
Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J., & Bordado, J. C. (2019, November 20). Biodiesel production processes and sustainable raw materials. Energies. MDPI AG. https://doi.org/10.3390/en12234408
Shrivastava, P., & Verma, T. N. (2020). Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil. Fuel, 265. https://doi.org/10.1016/j.fuel.2019.117005
Sinaga, W. V., Romy, & Helwani, Z. (2021). Kaji Eksperimental Penggunaan Biosolar B40 Terhadap Unjuk Kerja Mesin Dengan Menggunakan Variasi Tekanan Pengabutan Pada Nosel. Jom FTEKNIK, 8(1), 1–6. Retrieved from https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/29352
Suardi, S., Setiawan, W., Nugraha, A. M., Alamsyah, A., & Ikhwani, R. J. (2023). Evaluation of Diesel Engine Performance Using Biodiesel from Cooking Oil Waste (WCO). Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 14(1), 29–39. https://doi.org/10.21771/jrtppi.2023.v14.no1.p29-39
Wang, S., Karthickeyan, V., Sivakumar, E., & Lakshmikandan, M. (2020). Experimental investigation on pumpkin seed oil methyl ester blend in diesel engine with various injection pressure, injection timing and compression ratio. Fuel, 264. https://doi.org/10.1016/j.fuel.2019.116868
Yesilyurt, M. K. (2019). The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends. Renewable Energy, 132, 649–666. https://doi.org/10.1016/j.renene.2018.08.024
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Romy Romy, Suwitno Suwitno, Yogie Rinaldi Ginting, Ferdinandus Extranta Sembiring
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.